

Article Doi 10.5943/mycosphere/9/6/14

Identification and characterization of chestnut branch-inhabiting melanocratic fungi in China

Jiang N¹, Li J², Piao CG³, Guo MW³ and Tian CM^{1*}

¹ The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China

² General Station of Forest Pest Management, State Forestry Administration, Shenyang 110034, China

³ China Forestry Culture Collection Center, Chinese Academy of Forestry, Beijing 100091, China

Jiang N, Li J, Piao CG, Guo MW, Tian CM 2018 – Identification and characterization of chestnut branch-inhabiting melanocratic fungi in China. Mycosphere 9(6), 1268–1289, Doi 10.5943/mycosphere/9/6/14

Abstract

Chinese chestnut (*Castanea mollissima*) is an important commercial tree species widely cultivated in most provinces in China. Chestnut branch-inhabiting fungi may be responsible for branch canker and dieback. In present study, dead corticated chestnut branches with superficial ascomata or conidiomata were collected from chestnut plantations in Hebei, Shaanxi and Shandong provinces. Fungi producing melanocratic ascospores or conidia were observed and identified based on both morphology and analyses of DNA sequence data. Specimens were identified to five species, viz. *Neopseudomelanconis castaneae* gen. et sp. nov., *Aplosporella javeedii* Jami, Gryzenh., Slippers and M.J. Wingf., *Coryneum umbonatum* Nees, *Lopadostoma americanum* Jaklitsch, J. Fourn., J.D. Rogers and Voglmayr and *Myrmaecium fulvopruinatum* Jaklitsch and Voglmayr.

 $Key\ words-2\ new\ taxa-canker-Diaporthales-Pseudomelan conidaceae-taxonomy$

Introduction

Chestnuts are important fruit and timber trees worldwide. The four main species are commonly known as American, Chinese, European and Japanese chestnuts. Chinese sweet chestnut (*Castanea mollissima* Blume) is widely cultivated in China for its important economic value (Zhang et al. 2009, Lu & Guo 2017). Nevertheless, fungal diseases have greatly disturbed the healthy growth of chestnut (Tai 1979, Visentin et al. 2012, Gong et al. 2017, Jiang et al. 2018). Chestnut blight caused by *Cryphonectria parasitica* is the most notorious branch canker disease among various chestnut diseases worldwide (Jiang et al. 2018, Rigling & Prospero 2018).

Melanocratic fungi are an artificial taxonomic group which produces melanocratic conidia or ascospores (Wijayawardene et al. 2016). They are more recognizable than species which produce hyaline spores, hence we started our taxonomic work on branch-inhabiting fungi on *Castanea mollissima* with melanocratic taxa (Fig. 1). In this study, fresh specimens with melanocratic spores were collected from Hebei, Shaanxi and Shandong provinces in China, and were identified to five genera, viz. *Aplosporella, Coryneum, Lopadostoma, Myrmaecium* and *Neopseudomelanconis* gen. nov., with evidence from morphology and phylogenies.

Branch-inhabiting fungi on Castanea mollissima mainly contain canker pathogens and

saprobes. For example, *Cryphonectria parasitica* is an important canker pathogen and *C. radicalis* is considered as saprobe on chestnut trees (Gryzenhout et al. 2009). Determining whether fungi are parasitic or saprobic depends on their pathogenicity to their hosts, hence there is no absolute limit between pathogens and saprobes. In China, identification of branch-inhabiting pathogens and saprobes on chestnut is poor. Therefore, the present study was conducted (i) to identify branch-inhabiting melanocratic fungi on chestnut trees and (ii) to propose *Neopseudomelanconis* gen. nov. based on both morphological and phylogenetic evidences.

Figure 1 – Melanocratic spores observed from *Castanea mollissima*. A *Neopseudomelanconis castaneae*. B *Aplosporella javeedii*. C *Coryneum umbonatum*. D *Myrmaecium fulvopruinatum*. E *Lopadostoma americanum*. Scale bars: $A-E = 10 \mu m$.

Materials & Methods

Isolates and morphology

Fresh specimens of dead corticated branches were collected from *Castanea mollissima* in Hebei, Shaanxi and Shandong provinces in China. Single conidial and ascosporous isolates were established by removing a mucoid spore mass from conidiomata or ascomata, and spreading the suspension on the surface of PDA (potato dextrose agar) or MEA (malt extract agar). After inoculation, agar plates were incubated at 25 °C to induce germination of spores. Single germinating spores were then transferred to clean plates under a dissecting microscope with a sterile needle (Jaklitsch et al. 2014, 2015, Jami et al. 2014, Wijayawardene et al. 2016, Senanayake et al. 2017). Specimens and isolates were deposited in the Museum of Beijing Forestry University (BJFC). Axenic cultures are maintained in the China Forestry Culture Collection Center (CFCC).

Species identification was based on morphological features of the conidiomata or ascomata produced on infected chestnut branches. Cross-sections were prepared by hand using a double-edge blade under a Leica stereomicroscope (M205 FA). At least 20 conidiomata/ascomata, 10 asci and 50 conidia/ascospores were measured to calculate the mean size and standard deviation. Measurements were reported as maxima and minima in parentheses and the range representing the mean plus and minus the standard deviation of the number of measurements given in parentheses (Voglmayr et al. 2017). Microscopic photographs were captured with a Nikon Eclipse 80i microscope equipped with a Nikon digital sight DS-Ri2 high definition colour camera, using differential interference contrast (DIC) illumination and the Nikon software NIS-Elements D Package v. 3.00. Cultural characteristics of isolates incubated on PDA or MEA in the dark at 25°C were recorded.

Molecular characterization and multi-locus phylogenetic analysis

Genomic DNA was extracted from axenic living cultures with cellophane using a modified CTAB method (Doyle & Doyle 1990). To amplify the internal transcribed spacer (ITS), large subunit (LSU), translation elongation factor 1α (TEF1- α) and the largest subunit of RNA polymerase II (RPB2), we used the primers LR0R and LR5 (Moncalvo et al. 1995, Vilgalys & Hester 1990), ITS1 and ITS4 (White et al. 1990), EF1-688F and EF1-986R (Alves et al. 2008,

Carbone & Kohn 1999), dRPB2-5f and dRPB2-7r (Voglmayr et al. 2016), respectively. The polymerase chain reaction assay was conducted as described by Fan et al. (2018). The PCR amplification products were estimated visually by electrophoresis in 2% agarose gels. DNA sequencing was performed using an ABI PRISM® 3730XL DNA Analyzer with BigDye® Terminater Kit v.3.1 (Invitrogen) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China).

Sequences from this study and reference sequences obtained from GenBank (Tables 1–4) were aligned and edited manually using MEGA6 (Tamura et al. 2013). The alignments were concatenated for phylogenetic analyses. Maximum parsimony (MP) analysis was conducted with PAUP v.4.0b10 (Swofford 2003), maximum likelihood (ML) analysis with PhyML v.3.1 (Guindon et al. 2010) and Bayesian inference (BI) with MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003). Sequences data were deposited in GenBank (Tables 1–4). The multilocus file was deposited in TreeBASE (www.treebase.org) as accession S22783. Introduction of the new species based on molecular data follow the recommendations of Jeewon & Hyde (2016).

Table 1 Strains of Diaporthales species used in the molecular analyses in this study, the genes sequenced and GenBank accessions. The new strains from the current study are in red.

a .			GenBank numbers		
Species	Strain/Specimen	Host	ITS	LSU	
Apiosporopsis carpinea	CBS 771.79	Carpinus betulus	NA	AF277130	
Apiosporopsis sp.	Masuya 11Af2-1	Alnus firma	NA	AB669034	
Apoharknessia insueta	CBS 111377	Eucalyptus pellita	JQ706083	AY720814	
Asterosporium asterospermum	MFLU 15-3555	Fagus sylvatica	NA	MF190062	
Auratiopycnidiella tristaniopsidis	CBS 132180	Tristaniopsis laurina	JQ685516	JQ685522	
Chiangraiomyces bauhiniae	MFLUCC 17-1669	<i>Bauhinia</i> sp.	MF190118	MF190064	
Coniella straminea	CBS 149.22	<i>Fragaria</i> sp.	AY339348	AF362569	
Coniella wangiensis	CBS 132530	Eucalyptus sp.	JX069873	JX069857	
Coryneum arausiacum	MFLUCC 13-0658	Quercus sp.	MF190120	MF190066	
Coryneum arausiacum	MFLUCC 15-1110	Quercus sp.	MF190121	MF190067	
Coryneum modonium	AR 3558	Castanea sativa	NA	EU683073	
Coryneum depressum	AR 3897	Quercus cerris	NA	EU683074	
Coryneum umbonatum	AR 3541	Quercus cerris	NA	EU683072	
Cryphonectria macrospora	CBS 122593	Quercus mongolica	EU199182	AF408340	
Cryphonectria parasitica	ATCC 38755	Castanea dentata	AY141856	EU199123	
Cryptosporella hypodermia	AR 3552	Ulmus minor	EU199181	AF408346	
Cytospora chrysosperma	CFCC 89600	Sophora japonica	KR045623	KR045623	
Dendrostoma mali	CFCC 52102	Malus spectabilis	MG682072	MG682012	
Diaporthe eres	CBS 109767	Acer campestre	KC343075	AF408350	
Diaporthosporella cercidicola	CFCC 51994	Cercis chinensis	KY852492	KY852515	
Diaporthostoma machili	CFCC 52100	Machilus leptophylla	MG682080	MG682020	
Disculoides eucalypti	CPC 17650	Eucalyptus sp.	JQ685517	JQ685523	
Ditopella ditopa	CBS 109748	Alnus glutinosa	EU199187	EU199126	
Erythrogloeum hymenaeae	CPC 18819	Hymenaea courbaril	JQ685519	JQ685525	
Gnomonia gnomon	CBS 199.53	Corylus avellana	AY818956	AF408361	

Table 1 Continued.

a .			GenBank numbers		
Species	Strain/Specimen	Host	ITS	LSU	
Harknessia eucalypti	CBS 342.97	Eucalyptus regnans	AY720745	AF408363	
Harknessia molokaiensis	CBS 109779	Eucalyptus robusta	NA	AF408390	
Hercospora tiliae	CBS 109746	Tilia tomentosa	NA	AF408365	
Juglanconis appendiculata	D96	Juglans nigra	KY427139	KY427139	
Juglanconis juglandina	ME23	Juglans nigra	KY427150	KY427150	
Lamproconium desmazieri	MFLUCC 15-0870	Tilia tomentosa	KX430134	KX430135	
<i>Lasmenia</i> sp.	CBS 124123	Nephelium lappaceum	GU797406	JF838338	
Macrohilum eucalypti	CPC 10945	Eucalyptus sp.	DQ195781	DQ195793	
Melanconiella ellisii	BPI 878343	Carpinus caroliniana	JQ926271	JQ926271	
Melanconiella spodiaea	MSH	Carpinus betulus	JQ926298	JQ926298	
Melanconis betulae	CFCC 50471	Betula albosinensis	KT732952	KT732971	
Melanconis stilbostoma	CFCC 50475	Betula platyphylla	KT732956	KT732975	
Nakataea oryzae	CBS 243.76	NA	KM484861	DQ341498	
Neopseudomelanconis castaneae	CFCC 52787	Castanea mollissima	MH469162	MH469164	
Neopseudomelanconis castaneae	CFCC 52788	Castanea mollissima	MH469163	MH469165	
Pachytrype princeps	Rogers S	NA	NA	FJ532382	
Paradiaporthe artemisiae	MFLUCC 14-0850	Artemisia sp.	MF190155	MF190100	
Prosopidicola mexicana	CBS 113530	Prosopis glandulosa	AY720710	NA	
Pseudomelanconis caryae	CFCC 52110	Carya cathayensis	MG682082	MG682022	
Pseudoplagiostoma eucalypti	CBS 124807	Eucalyptus urophylla	GU973512	GU973606	
Pseudoplagiostoma oldii	CBS 115722	Eucalyptus camaldulensis	GU973535	GU973610	
Pyricularia grisea	Ina168	NA	AB026819	AB026819	
Rossmania ukurunduensis	AR 3484	Acer ukurunduense	NA	EU683075	
Stegonsporium pyriforme	CBS 124487	Acer heldreichii	KF570160	KF570160	
Stilbospora macrosperma	CBS 121883	Carpinus betulus	JX517290	JX517299	
Sydowiella fenestrans	CBS 125530	Chamerion angustifolium	JF681956	EU683078	
Synnemasporella aculeans	CFCC 52094	Rhus chinensis	MG682086	MG682026	
Synnemasporella toxicodendri	CFCC 52097	Toxicodendron sylvestre	MG682089	MG682029	

Table 2 Strains of Aplosporella species used in the molecular analyses in this study, the genes sequenced and GenBank accessions. The new strains from the current study are in red.

Species	at 1a 1	TT /	GenBank numbers		
	Strain/Specimen	Host	ITS	TEF1-α	
Aplosporella africana	CBS 121777	Acacia mellifera	EU101315	EU101360	
Aplosporella africana	CBS 121779	Acacia mellifera	EU101317	EU101362	
Aplosporella artocarpi	CPC 22791	Artocarpus heterophyllus	KM006450	KM006481	
Aplosporella hesperidica	CBS 208.37	NA	JX681069	NA	
Aplosporella javeedii	CFCC 50052	Gleditsia sinensis	KP208838	KP208844	

Table 2 Continued.

	aa .		GenBank numbers		
Species	pecies Strain/Specimen Host		ITS	TEF1-α	
Aplosporella javeedii	CFCC 50053	Sophora japonica	KP208839	KP208845	
Aplosporella javeedii	CFCC 52777	Castanea mollissima	MH458901	MH482840	
Aplosporella ginkgonis	CFCC 89660	Morus alba	KR045623	KP310847	
Aplosporella ginkgonis	CFCC 89661	Ginkgo biloba	KM030583	KM030597	
Aplosporella macropycnidia	CGMCC3.17725	Cerasus yedoensis	KT343648	KX011176	
Aplosporella macropycnidia	CGMCC3.17726	Cerasus yedoensis	KT343649	KX011177	
Aplosporella papillata	CBS 121780	Acacia tortillas	EU101328	EU101373	
Aplosporella papillata	CBS 121781	Acacia erioloba	EU101329	EU101374	
Aplosporella prunicola	CBS 121167	Prunus persica var. nucipersica	KF766147	NA	
Aplosporella prunicola	STE-U 6326	Prunus persica var. nucipersica	EF564375	NA	
Aplosporella thailandica	MFLU 16-0615	NA	KX423536	KX423537	
Aplosporella yalgorensis	MUCC 511	Eucalyptus gomphocephala	EF591926	EF591977	
Aplosporella yalgorensis	MUCC 512	Mimetes cucullata	EF591927	EF591978	
Saccharata proteae	CBS 115206	NA	KC343004	KC343730	

Table 3 Strains of *Lopadostoma* species used in the molecular analyses in this study, the genes sequenced and GenBank accessions. The new strains from the current study are in red.

~ .			GenBank numbers			
Species	Strain/Specimen	Host	ITS	LSU	RPB2	
Lopadostoma americanum	CBS 133211	Quercus sp.	KC774568	KC774568	KC774525	
Lopadostoma americanum	CFCC 52313	Castanea mollissima	MH454484	MH454486	MH482841	
Lopadostoma americanum	CFCC 52314	Castanea mollissima	MH454485	MH454487	MH482842	
Lopadostoma cf. amoenum	MUCL 51842	Fagus sylvatica	KC774569	KC774569	NA	
Lopadostoma dryophilum	CBS 133213	Quercus petraea	KC774570	KC774570	KC774526	
Lopadostoma dryophilum	LG23	Quercus petraea	KC774571	KC774571	KC774527	
Lopadostoma dryophilum	LG24	Quercus petraea	KC774572	KC774572	KC774528	
Lopadostoma fagi	LF	NA	KC774574	KC774574	KC774530	
Lopadostoma fagi	CBS 133206	Fagus sylvatica	KC774575	KC774575	KC774531	
Lopadostoma fagi	LF2	Fagus sylvatica	KC774576	KC774576	KC774532	
Lopadostoma gastrinum	LG1	Carpinus betulus	KC774579	KC774579	KC774535	
Lopadostoma gastrinum	CBS 133210	Ulmus glabra	KC774581	KC774581	KC774536	
Lopadostoma gastrinum	CBS 134632	Ulmus minor	KC774584	KC774584	KC774537	
Lopadostoma insulare	LG32	Quercus coccifera	KC774588	KC774588	KC774541	
Lopadostoma insulare	CBS 133214	Quercus ilex	KC774589	KC774589	KC774542	
Lopadostoma lechatii	CBS 133694	Carpinus betulus	KC774590	KC774590	KC774543	
Lopadostoma linospermum	CBS 133208	Pistacia lentiscus	KC774591	KC774591	KC774544	

Table 3	Continued.
---------	------------

a .			GenBank numbers			
Species	Strain/Specimen	Host	ITS	LSU	RPB2	
Lopadostoma linospermum	LPL1	Pistacia lentiscus	KC774592	KC774592	KC774545	
Lopadostoma meridionale	CBS 133209	Quercus ilex	KC774593	KC774593	KC774546	
Lopadostoma meridionale	LG29	Quercus ilex	KC774594	KC774594	KC774547	
Lopadostoma meridionale	LG33	Quercus coccifera	KC774595	KC774595	KC774548	
Lopadostoma cf. polynesium	LAG	Amelanchier ovalis	KC774600	KC774600	KC774553	
Lopadostoma pouzarii	CBS 103.96	Fraxinus excelsior	KC774601	KC774601	KC774554	
Lopadostoma pouzarii	MUCL 47149	Fraxinus excelsior	KC774602	KC774602	NA	
Lopadostoma quercicola	CBS 133212	Quercus cerris	KC774603	KC774603	KC774555	
Lopadostoma quercicola	LG16	Quercus cerris	KC774606	KC774606	KC774556	
Lopadostoma quercicola	CBS 134633	Quercus pubescens	KC774610	KC774610	KC774558	
Lopadostoma turgidum	LT	Fagus sylvatica	KC774616	KC774616	KC774561	
Lopadostoma turgidum	LT1	Fagus sylvatica	KC774617	KC774617	KC774562	
Lopadostoma turgidum	CBS 133207	Fagus sylvatica	KC774618	KC774618	KC774563	

Results

Diaporthales based on analyses of LSU and ITS sequence data.

Diaporthales is a well-resolved ascomycetous order comprising phytopathogenic, saprobic, and endophytic fungi (Senanayake et al. 2017). Pseudomelanconidaceae was proposed in Diaporthales by Fan et al. (2018), and can be distinguished from the other diaporthalean taxa by conidiogenous cells with apical collarets and discreet annellations, and the inconspicuous hyaline conidial sheath when mature. *Pseudomelanconis caryae* on *Carya cathayensis* is the sole species in Pseudomelanconidaceae and causes branch canker of hickory trees in China (Fan et al. 2018).

The taxa in Diaporthales were selected based on Wijayawardene et al. (2017, 2018). The combined LSU and ITS data set consisted of 53 strains with *Nakataea oryzae* (CBS 243.76) and *Pyricularia grisea* (Ina168) as outgroup taxa. Alignment comprises 1537 characters after alignment. Of these, 920 characters were constant, 120 variable characters were parsimony-uninformative and 507 characters were parsimony informative. The MP analysis resulted in ten equally most parsimonious trees, with the first tree (TL = 2609, CI = 0.419, RI = 0.606, RC = 0.254) was shown in Fig. 2. The topology of phylogenetic tree obtained from ML was similar with the MP tree. The novel genus appeared in a distinct clade with high bootstrap support (Fig. 2).

Neopseudomelanconis C.M. Tian & N. Jiang, gen. nov.

MycoBank number: MB 825183; Facesoffungi number: FoF 04969

Etymology – Named after its morphological similarity to *Pseudomelanconis*.

Type species: Neopseudomelanconis castaneae C.M. Tian & N. Jiang.

Original description – Sexual morph: Undetermined. Asexual morph – *Conidiomata* in bark, acervular, immersed in host bark to erumpent. *Ectostromatic* disc inconspicuous, causing a more or less pustulate bark surface. *Central column* beneath the disc more or less conical. The marginal part of the central column comprises conidiophores and their basal cell layers. *Conidiophores* branched

or unbranched, aseptate, cylindrical, hyaline to pale brown, smooth-walled, sometimes reduced to conidiogenous cells. *Conidiogenous cells* annellidic, sometimes with apical collarette. *Conidia* hyaline when immature, becoming brown at maturity, ellipsoid to oblong, 2-celled, multiguttulate, with distinct hyaline sheath, becoming inconspicuous when mature. Conidial wall smooth on the outer surface, with inconspicuous to distinct, sometimes confluent irregular vertucae on the inner surface.

Table 4 Strains of *Myrmaecium* species used in the molecular analyses in this study, the genes sequenced and GenBank accessions. The new strains from the current study are in red.

a .	a	TT 4	a ,	GenBank numbers			
Species	Strain/Specimen	Strain/Specimen Host Countr		ITS	LSU	TEF	RPB2
Bambusaria bambusae	MFLUCC 12-0851	Thyrsostachys siamensis	Thailand	KP687812	KP687812	KP687982	KP687890
Bambusaria bambusae	CBS 139763	Thyrsostachys siamensis	Thailand	KP687813	KP687813	KP687983	KP687891
Myrmaecium fulvopruinatum	CBS 139057	Fagus sylvatica	Austria	KP687858	KP687858	KP688027	KP687933
Myrmaecium fulvopruinatum	CBS 139058	Fagus grandifolia	USA	KP687861	KP687861	KP688030	KP687936
Myrmaecium fulvopruinatum	CBS 139059	Quercus cerris	Austria	KP687863	KP687863	KP688032	KP687938
Myrmaecium fulvopruinatum	VFJ1	Unidentified corticated twigs	China	KP687862	KP687862	KP688031	KP687937
Myrmaecium fulvopruinatum	CFCC 52769	Castanea mollissima	China	MH458908	MH458902	MH482828	MH482835
Myrmaecium fulvopruinatum	CFCC 52770	Castanea mollissima	China	MH458909	MH458903	MH482829	MH482836
Myrmaecium fulvopruinatum	CFCC 52771	Castanea mollissima	China	MH458910	MH458904	MH482830	MH482837
Myrmaecium fulvopruinatum	CFCC 52772	Castanea mollissima	China	MH458911	MH458905	MH482831	MH482838
Myrmaecium fulvopruinatum	CFCC 52773	Castanea mollissima	China	MH458912	MH458906	MH482832	MH482839
Myrmaecium fulvopruinatum	CFCC 52774	Castanea mollissima	China	MH458913	MH458907	MH482833	MH482834
Myrmaecium rubricosum	CBS 139067	Unidentified bark	France	KP687881	KP687881	KP688049	KP687955
Myrmaecium rubricosum	CBS 139068	Quercus pubescens	Croatia	KP687885	KP687885	KP688053	KP687958
Myrmaecium rubrum	CBS 109505	Quercus sp.	Italy	GU456324	GU456324	GU456260	GU456344
Valsaria insitiva	CBS 139056	Acer monspessulanum	Croatia	KP687847	KP687847	KP688016	KP687922
Valsaria insitiva	CBS 139061	unidentified corticated twigs	China	KP687866	KP687866	KP688035	KP687941

Table 4 Continued.

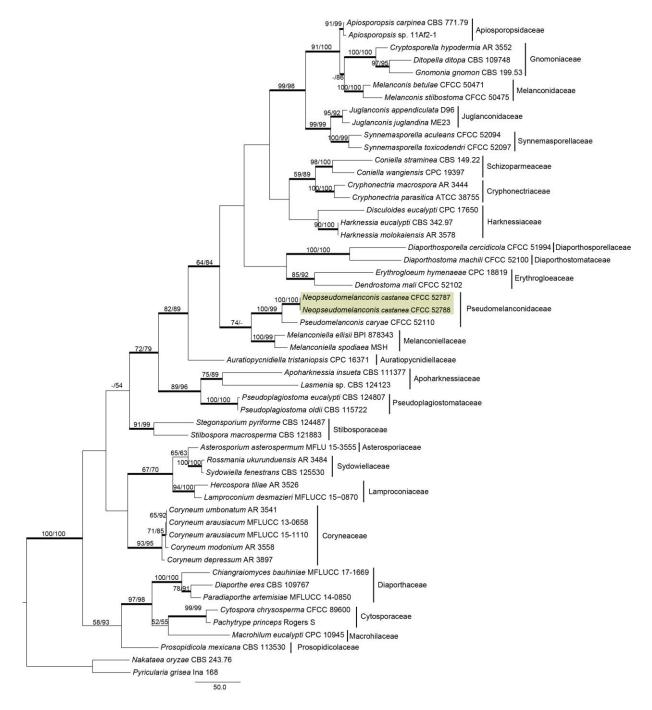
~		~	GenBank numbers			
Species Strain/Specimen H	Host	Country	ITS	LSU	TEF	RPB2
CBS 139062	Quercus ilex	Greece	KP687868	KP687868	KP688037	KP687943
CBS 139064	Unidentified corticated twig	France	KP687874	KP687874	KP688042	KP687948
CBS 121890	Hippocrepis emerus	Slovenia	KP687851	KP687851	KP688020	KP687926
CBS 128015	Caragana arborescens	Austria	KP687853	KP687853	KP688022	KP687928
CBS 139065	Quercus macrolepis	Greece	KP687878	KP687878	KP688046	KP687952
CBS 139066	Quercus pubescens	Austria	KP687879	KP687879	KP688047	KP687953
CBS 121714	Ceratonia siliqua	Greece	KP687848	KP687848	KP688017	KP687923
CBS 125584	Cytisus scoparius	Italy	EU040213	EU040213	KP688023	KP687929
	CBS 139064 CBS 121890 CBS 128015 CBS 139065 CBS 139066 CBS 121714	CBS 139062Quercus ilexCBS 139064Unidentified corticated twigCBS 121890Hippocrepis emerusCBS 128015Caragana arborescensCBS 139065Quercus macrolepisCBS 139066Quercus pubescensCBS 121714Ceratonia siliqua	CBS 139062Quercus ilexGreeceCBS 139064Unidentified corticated twigFrance twigCBS 121890Hippocrepis emerusSloveniaCBS 128015Caragana arborescensAustriaCBS 139065Quercus macrolepisGreeceCBS 139066Quercus pubescensAustriaCBS 121714Ceratonia siliquaGreece	CBS 139062Quercus ilexGreeceKP687868CBS 139064Unidentified corticated twigFranceKP687874CBS 121890Hippocrepis emerusSloveniaKP687851CBS 128015Caragana arborescensAustriaKP687853CBS 139065Quercus macrolepisGreeceKP687878CBS 139066Quercus pubescensAustriaKP687879CBS 121714Ceratonia siliquaGreeceKP687848	Strain/SpecimenHostCountryITSLSUCBS 139062Quercus ilexGreeceKP687868KP687868CBS 139064Unidentified corticated twigFranceKP687874KP687874CBS 121890Hippocrepis emerusSloveniaKP687851KP687851CBS 128015Caragana arborescensAustriaKP687853KP687853CBS 139065Quercus macrolepisGreeceKP687878KP687879CBS 139066Quercus pubescensAustriaKP687848KP687848CBS 121714Ceratonia siliquaGreeceKP687848KP687848	Strain/SpecimenHostCountryITSLSUTEFCBS 139062Quercus ilexGreeceKP687868KP687868KP688037CBS 139064Unidentified corticated twigFranceKP687874KP687874KP688042CBS 121890Hippocrepis emerusSloveniaKP687851KP687851KP688020CBS 128015Caragana arborescensAustriaKP687853KP687853KP688022CBS 139065Quercus macrolepisGreeceKP687878KP687878KP688047CBS 139066Quercus pubescensAustriaKP687879KP687879KP688047CBS 121714Ceratonia siliquaGreeceKP687848KP687848KP688017

Neopseudomelanconis castaneae C.M. Tian & N. Jiang, sp. nov.

MycoBank number: MB 825198; Facesoffungi number: FoF 04970

Etymology - Named after the host genus from which it was isolated, Castanea.

Saprobic on Castanea mollissima Blume in terrestrial habitats. Sexual morph – Undetermined. Asexual morph – Conidiomata, 0.5–1.5 mm wide ($\bar{x} = 0.8$, SD ± 0.2 mm, n = 20), 0.2–0.5 mm high ($\bar{x} = 0.3$, SD ± 0.15 mm, n = 20), acervular, immersed in host bark to erumpent, covered by blackish conidial masses at maturity. Central column beneath the disc more or less conical. Conidiophores unbranched or branched at base, aseptate, cylindrical, hyaline to pale brown, smooth-walled, 10–35 × 3.5–6 µm ($\bar{x} = 25$, SD ± 5.5 µm × $\bar{x} = 4.5$, SD ± 1.5 µm, n = 20). Conidiogenous cells enteroblastic, annellidic, with distinct annellations and collarettes. Conidia hyaline when immature, becoming greyish sepia to olivaceous, ellipsoid to oblong, multiguttulate, straight to slightly curved, 2-celled, 18–21.5 × 4.8–7 µm ($\bar{x} = 19.5$, SD ± 1.2 µm × $\bar{x} = 5.9$, SD ± 0.6 µm, n = 50), 1/w = (2.7–)2.9–3.7(–4.2), with distinct hyaline sheath, 0.5–1 µm diam., becoming inconspicuous when mature. Conidial wall smooth on the outer surface.


Culture characteristics – On PDA at 25 °C, cultures are initially white, becoming grey olivaceous. The colonies are flat, with irregular margins; texture initially uniform, becoming compact in centre after 1 month.

Known distribution - Dead corticated branches of Castanea mollissima.

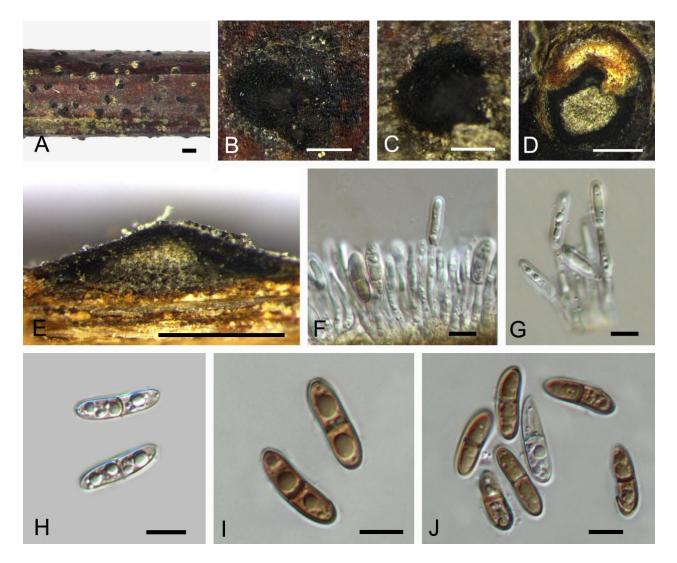

Material examined – CHINA, Shaanxi Province, Ankang City, chestnut plantation, 33°39'27.34"N, 109°07'15.23"E, 2504 m asl, on branches of *Castanea mollissima* Blume (Fagaceae), N. Jiang, 8 July 2017 (BJFC-S1444, holotype), ex-holotype CFCC 52787. Shaanxi Province, Ankang City, chestnut plantation, 32°13'43.51"N, 109°00'44.24"E, 1810 m asl, on branches of *Castanea mollissima*, N. Jiang, 3 July 2017 (BJFC-S1445, paratype), living culture CFCC 52788.

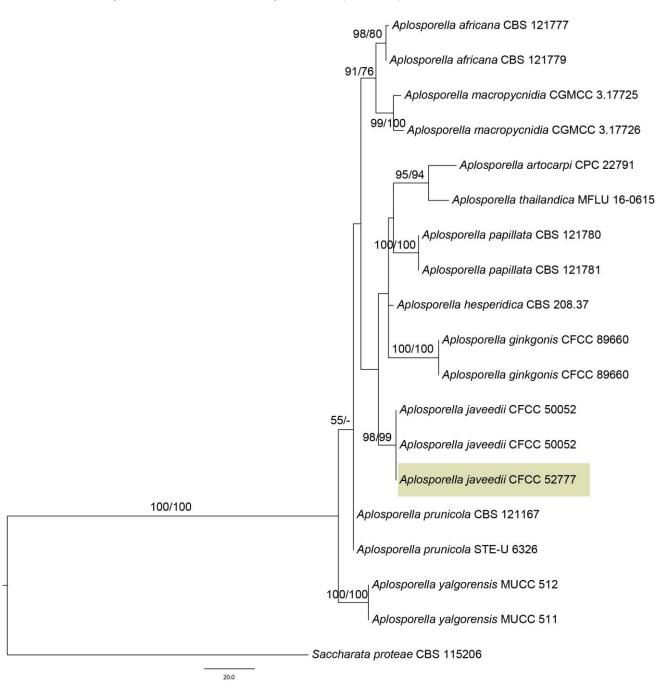
Fig. 3

Notes – Two isolates of *Neopseudomelanconis castaneae* cluster in a well-supported clade (MP/ML = 86/100) sister to *Pseudomelanconis caryae* (Fig. 2). *Neopseudomelanconis castaneae* and *Pseudomelanconis caryae* are united in the family Pseudomelanconidaceae by conidiogenous cells with apical collarets and discreet annellations, and the hyaline conidial sheath. However, *Neopseudomelanconis* is different from *Pseudomelanconis* in having branched conidiophores and 2-celled conidia. Additionally, *Neopseudomelanconis castaneae* and *Pseudomelanconis caryae* are the only two species in Pseudomelanconidaceae, they can be distinguished in conidial dimension (18–21.5 \times 4.8–7 µm in *Neopseudomelanconis castaneae* vs. 13–15 \times 4–5 µm in *Pseudomelanconis caryae*), and ITS and LSU loci (35/512 in ITS and 11/557 in LSU).

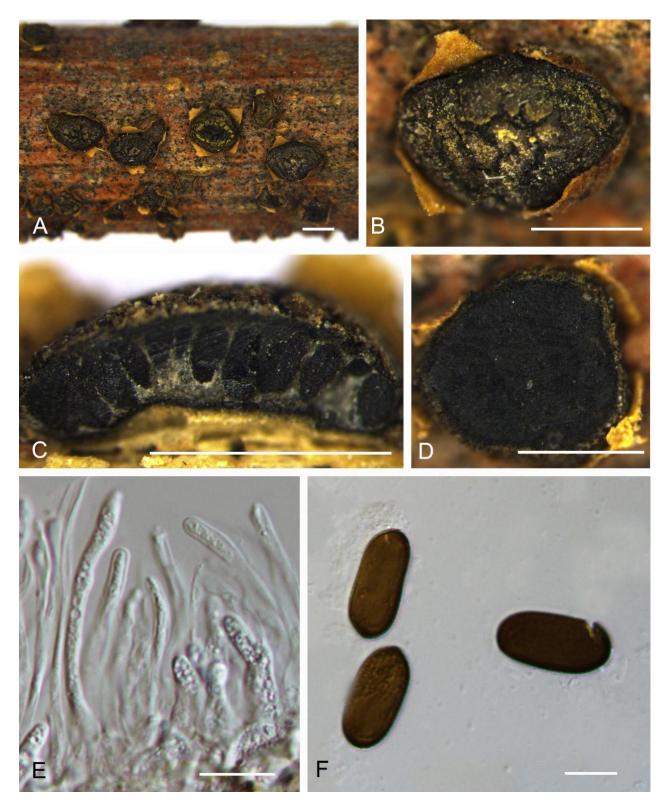
Figure 2 – Phylogram of Diaporthales based on combined LSU and ITS genes. MP and ML bootstrap support values above 50 % are shown at the first and second position. Thickened branches represent posterior probabilities above 0.90 from Bayesian inference. Scale bar = 50 nucleotide substitutions. The new sequences resulting from the current study are highlighted in yellow.

Figure 3 – Morphology of *Neopseudomelanconis castaneae* from *Castanea mollissima* (BJFC-S1444, holotype). A–C Habit of conidiomata on a stem. D Transverse sections through conidiomata. E Longitudinal sections through conidiomata. F, G Developing conidia attached to conidiogenous cells. H Immature conidia. I, J Mature conidia. Scale bars: A = 1 mm, B–E = 0.5 mm, F–J = 10 μ m.

Aplosporella based on analyses of ITS and TEF1-α sequence data.


Aplosporella (Aplosporellaceae, Botryosphaeriales) can be recognized by multiloculate conidiomata with a single ostiole, and brown, aseptate conidia (Du et al. 2017). The combined ITS and TEF1- α data set consists of 19 strains with *Saccharata proteae* (CBS 115206) as outgroup taxon. Alignment comprises 739 characters. Of these, 429 characters were constant, 229 variable characters were parsimony-uninformative and 81 characters were parsimony informative. The MP analysis resulted in 4 equally most parsimonious trees, with the first tree (TL = 383, CI = 0.903, RI = 0.805, RC = 0.727) was shown in Fig. 4. The topology of phylogenetic tree obtained from ML was similar with the MP tree.

Aplosporella javeedii Jami, Gryzenh., Slippers & M.J. Wingf., Fungal Biology 118: 174 (2014).


Fig. 5

Saprobic on dead and corticated branches of various hosts in terrestrial habitats. Sexual morph – Undetermined. Asexual morph – *Conidiomata* immersed in bark, erumpent from bark surface, separate, discoid, dark-brown to black, multi-locular, 0.5–1.5 mm diam. ($\bar{x} = 0.8$, SD ± 0.25 mm, n = 20), wall consisting of 4–10 layers, thick outer layers composed of dark-brown textura angularis, becoming hyaline and thin-walled towards the inner region. *Disc* brown to black,

circular to ovoid, 0.42–0.76 mm ($\bar{x} = 0.55$, SD ± 0.03 mm, n = 20), with 1–10 ostioles per disc. *Ostioles* multiple, conspicuous, level with the disc surface, sometimes covered below disc by lighter entostroma, 25.1–65.8 µm in diam. ($\bar{x} = 50.5$, SD ± 4.5 µm, n = 20). *Locules* multiple, irregularly arranged, subdivided frequently by invaginations with common walls, 0.80–1.52 mm in diam. ($\bar{x} = 1.2$, SD ± 0.15 mm, n = 20), *Paraphyses* hyaline, smooth-walled, 25.6–74.2 µm long ($\bar{x} = 45.5$, SD ± 15 µm, n = 20), 3.2–5.5 µm wide ($\bar{x} = 4.1$, SD ± 0.5 µm, n = 20). *Conidiogenous cells* formed from the cells lining the inner walls of the pycnidia, holoblastic, determinate, simple, ellipsoidal, and slightly tapered towards the apex, hyaline. *Conidia* aseptate, ellipsoid to oblong, smooth, ends rounded, initial hyaline, becoming brown when mature, 18.1–24.8 × 7.5–11.7 µm ($\bar{x} = 21.3$, SD ± 2.2 µm × $\bar{x} = 10.4$, SD ± 0.8 µm, n = 50), 1/w = (2–)2.1–2.2(–2.2).

Figure 4 – Phylogram of *Aplosporella* based on combined ITS and TEF1- α genes. MP and ML bootstrap support values above 50 % are shown at the first and second position. Scale bar = 20 nucleotide substitutions. The new sequence resulting from the current study is highlighted in yellow.

Figure 5 –*Aplosporella javeedii* from *Castanea mollissima* (BJFC-S1446). A, B Habit of conidiomata on a stem. C Longitudinal sections through conidiomata. D Transverse sections through conidiomata. E Conidiogenous cells and paraphyses. F conidia. Scale bars: A-D = 1 mm, E, F = 10 µm.

Culture characteristics – On MEA at 25 °C, white at first, then grey-olivaceous, similar to reverse side after 8 days. Colony uniform with appressed aerial mycelium. After 3 weeks, conidiomata solitary, globose, unilocular, immersed to semi-immersed on MEA.

Known distribution – Dead corticated branches of Albizia julibrissin Durazz. (Leguminosae)

(BJFC-S867), Broussonetia papyrifera L'Hér. ex Vent. (Moraceae) (BJFC-S884), Castanea mollissima Blume (Fagaceae) (BJFC-S1446), Gleditsia sinensis Lam. (Leguminosae) (BJFC-S1022), Juniperus chinensis L. (Cupressaceae) (BJFC-S1044), and Styphnolobium japonicum L. (Leguminosae) (BJFC-S1042) in China and from Celtis africana (Ulmaceae) (CMW 38166) and Searsia lancea (Anacardiaceae) (CMW 38168) in South Africa.

Specimen examined – CHINA, Hebei Province, Chengde City, 40°37'17.15"N, 118°28'21.54"E, 325 m asl, asexual morphs on corticated branches of *Castanea mollissima*, N. Jiang, 13 October 2017 (BJFC-S1446), living culture CFCC 52777.

Notes – The specimen of *Aplosporella* collected from chestnut branches is identified as *Aplosporella javeedii* based on morphological observations and multi-gene phylogenetic analyses. Morphologically, it is characterized by solitary globose unilocular conidiomata on MEA and erumpent discoid conidiomata, multiple ostioles in branches with ellipsoid to oblong aseptate conidia averaging $21.3 \times 10.4 \mu m$, which matches the type (CBS 133954) perfectly (Jami et al. 2014).

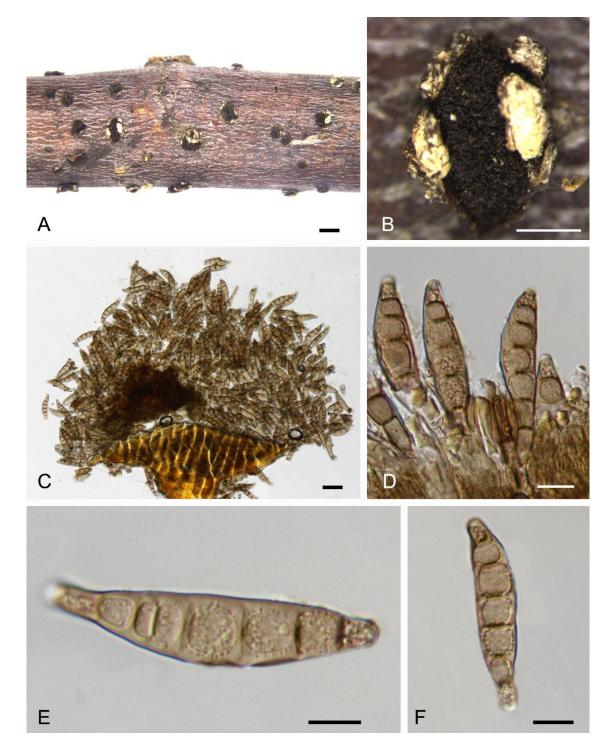
Coryneaceae is characterized by having black perithecia, often immersed in wood, asci that deliquesce at maturity, and an asexual morph with transversely distoseptate brown conidia (Senanayake et al. 2017). *Coryneum* is the sole genus in the family Coryneaceae of Diaporthales, and asexual morph is very common in nature and sometimes the sexual morph is closely associated with it (Senanayake et al. 2017). *Coryneum* species are generally considered highly host specific, especially occurring on hardwood trees such as those in the Betulaceae and Fagaceae (Sutton 1980).

Coryneum umbonatum Nees, Syst. Pilze (Würzburg) 34 (1816). Fig. 6

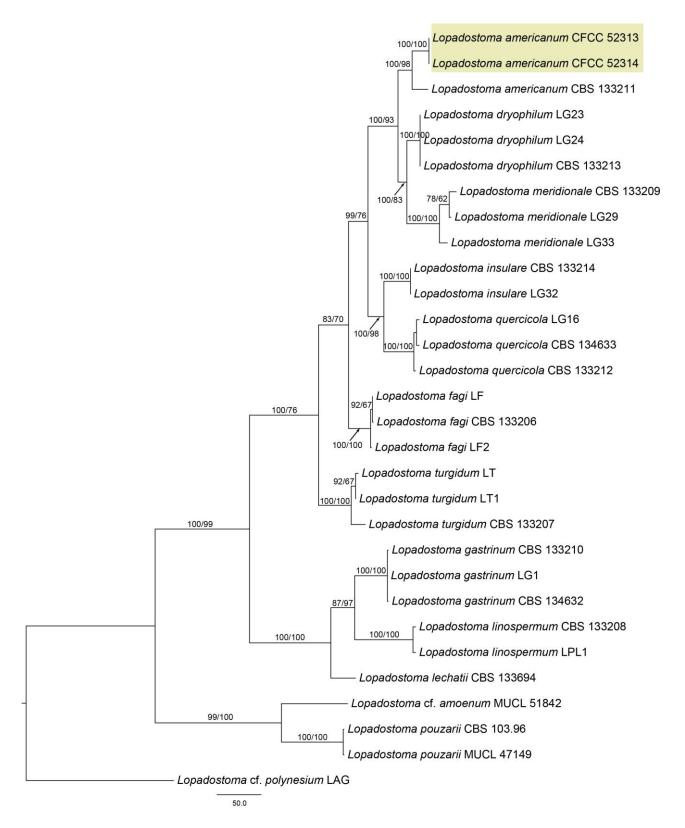
Pathogenic on *Castanea mollissima* branches. Sexual morph – Undetermined. Asexual morph – *Conidiomata* acervular, 0.2–0.8 mm wide ($\bar{x} = 0.5$, SD ± 0.25 mm, n = 20), 0.2–0.7 mm high ($\bar{x} = 0.4$, SD ± 0.2 mm, n = 20), solitary, erumpent through outer periderm layers of host, scattered, surface tissues above slightly domed. *Conidiophores* 15–30 µm long ($\bar{x} = 24$, SD ± 4.5 µm, n = 20), 3–7 µm wide ($\bar{x} = 4.5$, SD ± 1.5 µm, n = 20), branched at base, cylindrical, septate, hyaline at apex, pale brown at base. *Conidiogenous cells* holoblastic, annellidic, integrated, indeterminate, cylindrical, expanding towards apices, pale brown, smooth, with 0–1 percurrent proliferations. *Conidia* 42.2–82.5 × 9.6–15.7 µm ($\bar{x} = 62.5$, SD ± 6.5 µm × $\bar{x} = 13.6$, SD ± 1.1 µm, n = 50), 1/w = (4.2–)4.4–4.7(–5.1), variable in shape, curved, broadly fusiform to fusiform cylindrical or clavate, dark brown, smooth-walled, 5–7-distoseptate, apical cell with a hyaline tip, truncate and black at base.

Known distribution – on stems of *Betula* sp. (BPI 871006A) in the USA, on twigs of *Quercus petraea* Libelb (Fagaceae) (IMI 362542) in the UK and on branches of *Castanea mollissima* in China.

Specimen examined – CHINA, Hebei Province, Qinhuangdao City, 40°22'51.22"N, 119°11'51.15"E, 235 m asl, asexual morphs on branches of *Castanea mollissima*, collected by N. Jiang, 16 October 2017 (BJFC-S1449).


Notes – *Coryneum umbonatum* could cause cankers, dieback in shoots and twigs (Sutton 1980). In the present study, a *Coryneum* specimen collected from dead chestnut branches is identified as *Coryneum umbonatum* exactly matched conidial dimensions (Sutton 1980). *Coryenum modonium* was reported on *Castanea* species, but conidial size can differ the two species (42.2–82.5 × 9.6–15.7 μ m in *Coryneum umbonatum* vs. 50–71 × 14–19 μ m in *C. modonium*) (Sutton 1975, Teng 1996).

Lopadostoma based on analyses of LSU, ITS and RPB2 sequence data.


Lopadostoma (Lopadostomataceae, Xylariales) was reported as a saprobiotic genus with pustular pseudostroma development in bark of angiospermous trees (Jaklitsch et al. 2014). Species of Lopadostoma are generally not particularly common, but show a marked seasonal occurrence. L. americanum, L. dryophilum, L. insulare, L. meridionale and L. quercicola, were only collected

from *Quercus* trees, and these five spices were close in the phylogram (Jaklitsch et al. 2014). However, none was recorded from China.

The combined LSU, ITS and RPB2 data set consists of 30 strains with *Lopadostoma* cf. *polynesium* (LAG) as outgroup taxon. Alignment comprises 2750 characters after alignment. Of these, 1917 characters were constant, 255 variable characters were parsimony-uninformative and 578 characters were parsimony informative. The MP analysis resulted in one parsimonious tree (TL = 1464, CI = 0.750, RI = 0.861, RC = 0.646), which was shown in Fig. 7. The topology of phylogenetic tree obtained from ML was similar with the MP tree.

Figure 6 – Morphology of *Coryneum umbonatum* from *Castanea mollissima* (BJFC-S1449). A–B Habit of conidiomata on a stem. D Conidiogenous cells. C, E–F conidia. Scale bars: A = 1 mm, B = 0.5 mm, C = 30 μ m, E–F = 10 μ m.

Figure 7 – Phylogram of *Lopadostoma* based on combined LSU, ITS and RPB2 genes. MP and ML bootstrap support values above 50 % are shown at the first and second position. Scale bar = 20 nucleotide substitutions. The new sequences resulting from the current study are highlighted in yellow.

Lopadostoma americanum Jaklitsch, J. Fourn., J.D. Rogers & Voglmayr, Persoonia 32: 58 (2014).

Saprobic on Castanea mollissima branches. Sexual morph – Ectostromatic discs convex, circular or ellipsoid in outline, 0.8–1 mm in their greatest dimension, projecting to 0.5 mm above

Fig. 8

the host surface, roughened, carbonaceous, shiny in places; ostioles opening separately in the disc, inconspicuous, umbilicate. Stromata for the most part immersed in bark, pustulate-erumpent, separate, scattered, subglobose, 1.5–2.5 mm diam. ($\bar{x} = 2$, SD \pm 0.5 mm, n = 20), delimited from surrounding bark by a black carbonized line; the latter 80–120 µm thick, irregular in outline, reaching the wood surface and spreading over it between adjacent stromata. Tissue between ostiolar necks dark yellow-brown, grey to black, woody; tissue around and beneath the perithecia composed of brownish, scarcely altered bark tissue, in places mixed with whitish mycelium. Perithecia 6-10 per stroma, arranged in valsoid configuration, monostichous in smaller stromata, polystichous in larger ones, subglobose to ovoid, often laterally com-pressed, 0.2–0.7 mm diam. ($\overline{x} = 0.5$, SD ± 0.25 mm, n = 20), with long ostiolar necks converging toward the ectostromatic disc, 0.8-1.2 mm. Asci cylindrical, with 8 uniseriate ascospores, $52-88 \times 5.1-8.4 \ \mu\text{m}$, ($\overline{x} = 70$, SD $\pm 9.5 \ \mu\text{m} \times \overline{x} = 7.1$, SD \pm 0.5 µm, n = 50), sometimes fusiform due to partly overlapping biseriate or oblique ascospores, flat amyloid apical ring, stipe up to nearly as long as the spore part. Ascospores oblong to narrowly ellipsoid, $8-12 \times 3-4.2 \ \mu m$, ($\overline{x} = 10, \ SD \pm 0.5 \ \mu m \times \overline{x} = 3.6, \ SD \pm 0.3 \ \mu m, \ n = 50$), l/w = (2.1-)2.5-2.9(-3.3), dark to blackish brown, smooth, with 2 guttules when young, with commonly visible, straight, circumferential germ slit. Asexual morph – Undetermined.

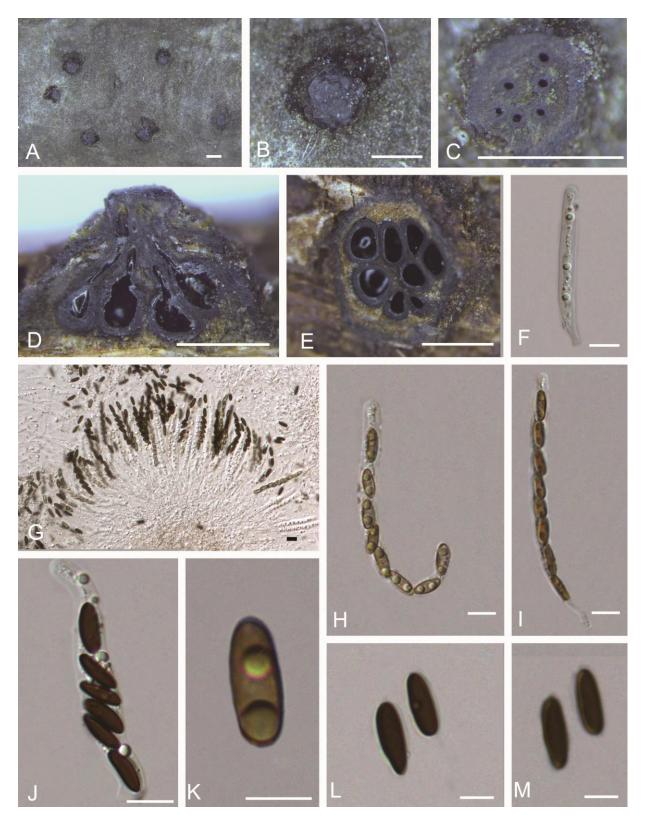
Culture characteristics – On PDA at 25 °C, colonies growing slowly, with uneven white mat, colourless, white to yellowish margin, and yellowish reverse, reaching 70 mm within 50 days, forming large thick yellowish pustules without conidial drops.

Known distribution – On *Quercus* spp. (CBS 133211) in North America and dead corticated branches of *Castanea mollissima* in China.

Specimen examined – CHINA, Shandong Province, Rizhao City, 119°46'23.18"N, 35°42'28.12"E, 452 m asl, on branches of *Castanea mollissima*, collected by N. Jiang, 23 April 2017 (BJFC-S1384, living culture CFCC 52313); Rizhao City, 119°46'23.18"N, 35°42'28.12"E, 452 m asl, on branches of *Castanea mollissima*, collected by N. Jiang, 23 April 2017 (BJFC-S1385), living culture CFCC 52314.

Notes – Two isolates of *Lopadostoma americanum* (CFCC 52313 and CFCC52314) cluster in a well-supported clade (MP/ML=100/100) sister to type strain of *Lopadostoma americanum* (CBS 133211). In addition, we compared morphological characteristics of *Lopadostoma americanum* between specimens collected from *Castanea mollissima* in China and type material recorded by Jaklitsch et al. (2014). Sexual morphs including pyrenocarp and ascospore characteristics and dimensions matched exactly. Hence we do not propose CFCC 52313 and CFCC52314 as a novel species.

Myrmaecium based on analyses of LSU, ITS, TEF1-a and RPB2 sequence data.


Myrmaecium (Valsariaceae, Valsariales) is a genus traditionally treated as a synonym of *Valsaria*, but resolved by Jaklitsch et al. (2015) to comprise *M. fulvopruinatum*, *M. rubricosum* and *M. rubrum*. The combined LSU, ITS, TEF1- α , and RPB2 data set consists of 25 strains with *Bambusaria bambusae* (MFLUCC 12-0851) and *Bambusaria bambusae* (CBS 139763) as outgroup taxa. Alignment comprises 3898 characters after alignment. Of these, 2714 characters were constant, 110 variable characters were parsimony-uninformative and 1074 characters were parsimony informative. The MP analysis resulted in one parsimonious tree (TL = 2133, CI = 0.755, RI = 0.920, RC = 0.245), which was shown in Fig. 9. The topology of phylogenetic tree obtained from ML was similar with the MP tree.

Myrmaecium fulvopruinatum (Berk.) Jaklitsch & Voglmayr, Fungal Diversity 73: 190 (2015).

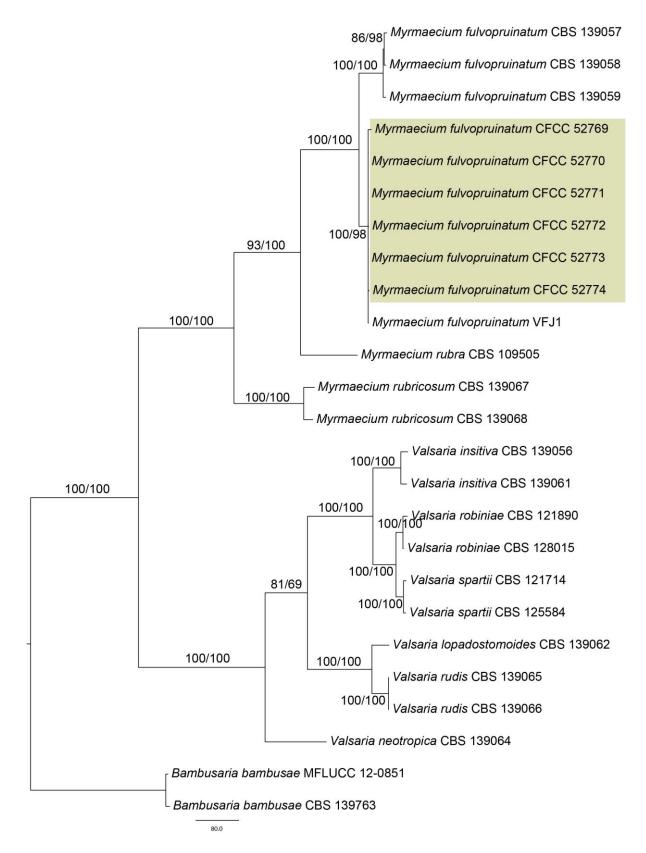

Pathogenic or *saprobic* on *Castanea mollissima* branches. Sexual morph – *Stromata* eustromatic, immersed to erumpent, causing small bumps in bark, subpulvinate, labiate or ring-like, often longish, separate, $1-3 \times 0.5-2$ mm ($\overline{x} = 2$, SD ± 0.6 mm $\times \overline{x} = 1.2$, SD ± 0.3 mm, n = 20), aggregated in linear rows. *Ascomata* 0.1–0.4 mm diam. ($\overline{x} = 0.25$, SD ± 0.1 mm, n = 20), 0.1–0.4 mm high ($\overline{x} = 0.25$, SD ± 0.15 mm, n = 20), arranged monostichously in valsoid groups of 5–10 at

Fig. 10

near basal position or in the stroma middle, less commonly in diatrypoid configuration just below the stroma surface, flask-shaped to subglobose; peridium 15–25 μ m thick, composed of a thin outer layer of flattened dark brown cells and an inner layer of flattened hyaline cells.

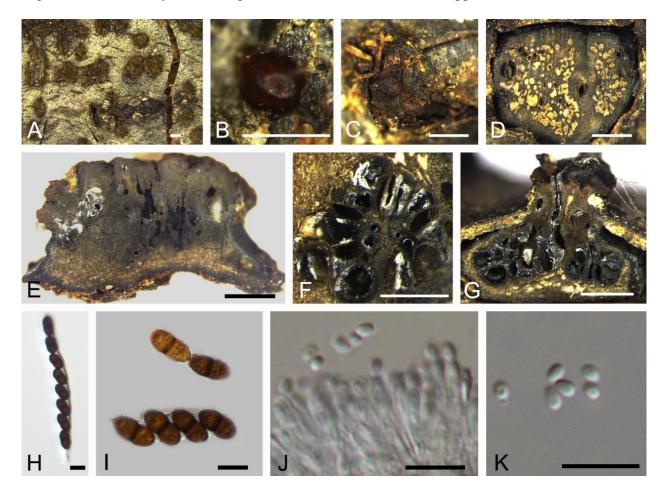

Figure 8 – Morphology of *Lopadostoma americanum* from *Castanea mollissima* (BJFC-S1384). A–B Habit of ascomata on a stem. C, E Transverse sections through ascomata. D Longitudinal sections through ascomata. F–J Asci. K: Immature ascospore. L–M Mature ascospores. Scale bars: $A-E = 1 \text{ mm}, \text{ F}-\text{M} = 10 \text{ }\mu\text{m}.$

Figure 9 – Phylogram of *Myrmaecium* based on combined LSU, ITS, TEF1- α and RPB2 genes. MP and ML bootstrap support values above 50 % are shown at the first and second position. Scale bar = 80 nucleotide substitutions. The new sequences resulting from the current study are highlighted in yellow.

Ostiolar necks converging into a common neck, less commonly separate, 200–1100 μ m long, ($\bar{x} = 500$, SD $\pm 150 \mu$ m, n = 20), 90–300 μ m diam. ($\bar{x} = 200$, SD $\pm 50 \mu$ m, n = 20), black, smooth; apices

at the surface usually with distinct circular outline, flush with the stroma surface or projecting to 120 µm; periphysate. Paraphyses filiform, unbranched, apically free, up to 150 µm long, 1–5 µm wide, attenuated upwards, slightly enlarged at the tip. *Asci* 88–142 × 10.8–19.5 µm ($\bar{x} = 118$, SD ± 6 µm × $\bar{x} = 14.5$, SD ± 2.1 µm, n = 20), numerous, cylindrical to subclavate, containing 8 uniseriate ascospores. *Ascospores* 14.3–19 × 7.1–8.6 µm ($\bar{x} = 16.5$, SD ± 1.8 µm × $\bar{x} = 7.8$, SD ± 0.5 µm, n = 50), l/w = (1.9–)2–2.4(–2.5), ellipsoid, 2-celled, dark brown to black, plump or attenuated towards apices with 1 large drop per cell and densely reticulate surface ornamentation. Asexual morph – Immature stromata often with a dark and gelatinous flat central surface, containing *conidiomata* as irregular, labyrinthine locules at ostiolar levels above immature ascomata; interior of locules hyaline to orange or brown, walls lined by palisades of densely clustered, lageniform to cylindrical, often basally curved phialides, 6.3–13.2 × 1.9–3.3 µm ($\bar{x} = 9.5$, SD ± 1.5 µm × $\bar{x} = 2.7$, SD ± 0.3 µm, n = 50), l/w = (2.8–)3.1–4.7(–6.5), with broad collarette, originating from large brown incrusted cells 8–15 µm × $\bar{x} = 1.7$, SD ± 0.2 µm, n = 50), l/w (1.3–)1.4–1.9(–2.1), oblong to bullet-shaped or subglobose, 1-celled, hyaline, orange-brown in mass, with rounded upper and truncate lower end.

Figure 10 – Morphology of *Myrmaecium fulvopruinatum* from *Castanea mollissima* (BJFC-S1450). A Habit of Stromata on the bark. B Conidiomata. C Ascomata. D Transverse sections through conidiomata. E Longitudinal sections through conidiomata. F Transverse sections through ascomata. G Longitudinal sections through ascomata. H–I Asci and ascospores. J–K Conidiogenous cells and conidia. Scale bars: A–E, G = 1 mm, F = 0.5 mm, H–K = 10 µm.

Culture characteristics – On MEA at 25 °C, colony radius 14–19 mm after 3 days, 26–33 mm after 5 days; centrally inoculated 90 mm plates entirely or nearly entirely covered by mycelium within 1 week; growth sometimes ceasing earlier. Colony zonate, surface and aerial hyphae with

distinct macroscopically visible radial arrangement; aerial hyphae forming white radial streaks; first white, soon turning yellowish to pale orange or rosy to yellow-brown. Odour pungent, cresol-like.

Known distribution – on sun-exposed, corticated logs and branches of coniferous and broadleaf trees, worldwide, but uncommon.

Specimen examined – CHINA, Shaanxi Province, Ankang City, Xiangxidong Garden, 32°40'32.36"N, 109°18'57.21"E, 1055 m asl, asexual morph on branches of *Castanea mollissima*, collected by N. Jiang, 1 July 2017 (BJFC-S1450, living culture CFCC 52769); Beijing City, Mentougou District, 39°17'24.56"N, 115°45'23.33"E, 452 m asl, sexual morph on branches of *Castanea mollissima*, collected by N. Jiang, 20 August 2017 (BJFC-S1451, living culture CFCC 52770); Hebei Province, Chengde City, 40°24'32.24"N, 117°28'55.24"E, 262 m asl, asexual morph on branches of *Castanea mollissima*, collected by N. Jiang, 11 October 2017 (BJFC-S1452, living culture CFCC 52771); Hebei Province, Chengde City, 40°21'44.18"N, 117°51'29.07"E, 256 m asl, sexual and asexual morph on branches of *Castanea mollissima*, collected by N. Jiang, 12 October 2017 (BJFC-S1453, living culture CFCC 52772 and CFCC 52773); Hebei Province, Chengde City, 40°37'39.14"N, 118°27'22.45"E, 350 m asl, sexual and asexual morph on branches of *Castanea mollissima*, collected by N. Jiang, 14 October 2017 (BJFC-S1454, culture CFCC 52774).

Notes – Six isolates of *Myrmaecium fulvopruinatum* (CFCC 52769, CFCC 52770, CFCC 52771, CFCC 52772, CFCC 52773, CFCC 52774 and VFJ1) from China cluster in a well-supported clade (MP/ML = 100/98) sister to three isolates of *M. fulvopruinatum* (CBS 139057, CBS 139058 and CBS 139059) from Austria and America. Although strains of *Myrmaecium fulvopruinatum* are divided into two clades in Fig. 9, there is not obvious morphological differences among different strains in both sexual and asexual morphs, thus we identified *Myrmaecium specimens from China as M. fulvopruinatum*.

Discussion

Chinese sweet chestnut (*Castanea mollissima*) represents an important fruit and timber tree species, branch cankers are common fungal diseases occurring in almost all chestnut plantations in China. However, fungal species that caused canker symptoms are complex and various, for example, *Cryphonectria parasitica* and *C. japonica* share similar orange fruiting bodies on the diseased chestnut branches (Gryzenhout et al. 2009). In the present study, we carried the taxonomy work of fungi diversity on chestnut trees in China started with fungi producing melanocratic spores which are more discernible. In addition, more fungi producing hyaline spores should be solved in the future.

Acknowledgements

This study is financed by National Natural Science Foundation of China (Project No.: 31670647).

References

- Alves A, Crous PW, Correia A, Phillips AJL. 2008 Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. Fungal Diversity 28, 1–13.
- Carbone I, Kohn LM. 1999 A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3), 553–556.
- Doyle JJ, Doyle JL. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.
- Fan XL, Bezerra JD, Tian CM, Crous PW. 2018 Families and genera of diaporthalean fungi associated with canker and dieback of tree hosts. Persoonia 40, 119–134.
- Du Z, Fan XL, Yang Q, Hyde KD, Tian CM. 2017 *Aplosporella ginkgonis* (Aplosporellaceae, Botryosphaeriales), a new species isolated from *Ginkgo biloba* in China. Mycosphere 8(2), 1246–1252.

- Gryzenhout M, Wingfield BD, Wingfield MJ. 2009 Taxonomy, phylogeny, and ecology of barkinhabiting and tree-pathogenic fungi in the Cryphonectriaceae. American Phytopathological Society Press, St Paul.
- Gong S, Zhang X, Jiang S, Chen C et al. 2017 A new species of *Ophiognomonia*, from northern china inhabiting the lesions of chestnut leaves infected with *Diaporthe eres*. Mycological Progress 16(1), 83–91.
- Guindon S, Dufayard JF, Lefort V, Anisimova M et al. 2010 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic and Biology 59(3), 307–321.
- Jaklitsch WM, Fournier J, Dai DQ, Hyde KD, Voglmayr H. 2015 *Valsaria* and the Valsariales. Fungal Diversity 73(1), 159–202.
- Jaklitsch WM, Fournier J, Rogers JD, Voglmayr H. 2014 Phylogenetic and taxonomic revision of *Lopadostoma*. Persoonia 32, 52–82.
- Jami F, Slippers B, Wingfield MJ, Gryzenhout M. 2014 Botryosphaeriaceae species overlap on four unrelated, native South African hosts. Fungal Biology 118(2), 168–179.
- Jeewon R, Hyde KD. 2016 Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7(11), 1669–1677.
- Jiang N, Fan XL, Yang Q, Du Z, Tian CM. 2018 Two novel species of *Cryphonectria* from *Quercus* in China. Phytotaxa 347(3), 243–250.
- Lu C, Guo SJ. 2017 Analysis on the nutritional characters and comprehensive evaluation of 16 chestnut germplasm resources. Science and Technology of Food Industry 37, 357–376. (In Chinese)
- Moncalvo JM, Wang HH, Hseu RS. 1995 Phylogenetic relationships in *Ganoderma* inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 87, 223–238.
- Rigling D, Prospero S. 2018 *Cryphonectria parasitica*, the causal agent of chestnut blight: invasion history, population biology and disease control. Molecular Plant Pathology 19(1), 7–20.
- Ronquist F, Huelsenbeck JP. 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574.
- Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SSN et al. 2017 Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86, 217–296.
- Sutton BC. 1975 Coelomycetes. V. Coryneum. Mycological Papers 138, 1-224.
- Sutton BC. 1980 The Coelomycetes: Fungi Imperfecti with Pycnidia Acervuli and Stomata. Commonwealth Mycological Institute, Kew.
- Swofford DL. 2003 PAUP*: Phylogenetic Analysis Using Parsimony, * and Other Methods, Version 4.0b10, Sinauer Associates, Sunderland.
- Tai FL. 1979 Sylloge Fungorum Sinicorum. Science Press, Beijing.
- Teng SC. 1996 Fungi of China. Mycotaxon, Ithaca.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12), 2725–2729.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8), 4238– 4246.
- Visentin I, Gentile S, Valentino D, Gonthier P et al. 2012 *Gnomoniopsis castanea* sp. nov. (Gnomoniaceae, Diaporthales) as the causal agent of nut rot in sweet chestnut. Journal of Plant Pathology 94(2), 411–419.
- Voglmayr H, Akulov OY, Jaklitsch WM. 2016 Reassessment of Allantonectria, phylogenetic position of Thyronectroidea, and Thyronectria caraganae sp. nov. Mycological Progress 15, 921.
- Voglmayr H, Castlebury LA, Jaklitsch WM. 2017 *Juglanconis* gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales). Persoonia 38, 136–155.

- White TJ, Bruns T, Lee S, Taylor J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18, 315–322.
- Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK et al. 2018 Outline of Ascomycota: 2017. Fungal Diversity, 88(1), 167–263.
- Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL et al. 2017 Notes for genera: Ascomycota. Fungal Diversity 86(1), 1–594.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M et al. 2016 Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77(1), 1–316.
- Zhang HW, Zhang GZ, Cao QC, Sun MD, Cao J. 2009 Investigations of main kinds of pests on Chinese chestnut in Beijing. Plant Protection 35 (2), 121–124.