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Abstract  

Economically and agriculturally important fungal species exhibit various lifestyles, and they 

can switch their life modes depending on the habitat, host tolerance, and resource availability. 

Traditionally, fungal lifestyles have been determined based on observation at a particular host or 

habitat. Therefore, potential fungal pathogens have been neglected until they cause devastating 

impacts on human health, food security, and ecosystem stability. This study focused on the class 

Sordariomycetes to explore the genomic traits that could be used to determine the lifestyles of fungi 

and the possibility of predicting fungal lifestyles using machine learning algorithms. A total of 638 

representative genomes encompassing 5 subclasses, 17 orders, and 50 families were selected and 

annotated. Through an extensive literature survey, the lifestyles of 553 genomes were determined, 

including plant pathogens, saprotrophs, entomopathogens, mycoparasites, endophytes, human 

pathogens and nematophagous fungi. We first tried to examine the relationship between fungal 

lifestyles and transposable elements. We unexpectedly discovered that second-generation 

sequencing technologies tend to result in reduced size of transposable elements while having no 

discernible impact on the content of protein-coding genes. Then, we constructed three numerical 

matrices: 1) a basic genomic feature matrix including 25 features; 2) a functional protein matrix 

including 24 features; 3) and a combined matrix. Meanwhile, we reconstructed a genome-scale 

phylogeny, across which comprehensive comparative analyses were conducted. The results 

indicated that basic genomic features reflected more on phylogeny rather than lifestyle, but the 

abundance of functional proteins exhibited relatively high discrimination not only in differentiating 

taxonomic groups at the higher levels but also in differentiating lifestyles. Among these lifestyles 

including plant pathogens, saprotrophs, entomopathogens, mycoparasites, endophytes, and human 

pathogens, plant pathogens exhibited the largest secretomes, while entomopathogens had the 

smallest secretomes. The abundance of secretomes served as a valuable indicator for differentiating 

plant pathogens from mycoparasites, saprotrophs, and entomopathogens, as well as for 
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discriminating endophytes from entomopathogens. Effectors have long been considered disease 

determinants, and indeed, we observed a higher presence of effectors in plant pathogens than in 

saprotrophs and entomopathogens. However, surprisingly, endophytes also exhibited a similar 

abundance of effectors, challenging their role as a reliable indicator for pathogenic fungi. A single 

functional protein group could not differentiate all lifestyles, but their combinations resulted in 

accurate differentiation for most lifestyles. Furthermore, models of six machine learning algorithms 

were trained, optimized, and evaluated based on the labeled genomes. The best-performance model 

was used to predict the lifestyle of 83 unlabeled genomes. Although insufficient genome sampling 

for several lifestyles and inaccurate lifestyle assignments for some genomes, the predictive model 

still obtained a high degree of accuracy in differentiating plant pathogens. The predictive model can 

be further optimized with more sequenced genomes in the future and provide a more reliable 

prediction. It can serve as an early warning system, enabling the identification of potentially 

devastating fungi and facilitating the implementation of appropriate measures to prevent their 

spread. 

 

Keywords – CAZymes – FCWDEs – Genomics – genomic profile – PCWDEs – secretome – TEs 

 

Introduction  

Sordariomycetes, established by Eriksson & Winka (1997), is the second-largest class of the 

phylum Ascomycota (Hyde et al. 2020). Based on the latest outline of Wijayawardene et al. (2022), 

it comprises 7 subclasses, 46 orders, and 172 families. The perithecial ascomata and inoperculate, 

unitunicate asci are the main diagnostic morphological characteristics for distinguishing 

Sordariomycetes from other classes (Maharachchikumbura et al. 2015, Chen et al. 2023). 

Sordariomycete species exhibit a cosmopolitan distribution and inhabit diverse ecosystems (Wang 

et al. 2018, Luo et al. 2019, Kwon et al. 2021, Maharachchikumbura et al. 2021a). Although most 

Sordariomyetes are saprobic on organic matter from various plants, the class also includes several 

notorious plant pathogens. For instance, Colletotrichum species (Glomerellaceae, Glomerellales), 

Fusarium graminearum, F. oxysporum (Nectriaceae, Hypocreales), and Pyricularia oryzae 

(Pyriculariaceae, Magnaporthales), are listed in the top 10 fungal plant pathogens (Dean et al. 

2012). Moreover, several species, such as Pyricularia grisea and Ophiostoma spp., were 

recognized as invasive plant pathogens altering the local natural ecosystems (Anderson et al. 2004, 

Solla et al. 2005). Some species are related to human and animal diseases (Barros et al. 2011, Troy 

et al. 2013, Tortorano et al. 2014, Řehulka et al. 2016, Jenks et al. 2018), while other species are of 

great importance to medicine, agriculture, and industry (Crawford et al. 1952, Kaewchai et al. 

2009, Xu et al. 2014). Diverse lifestyles, including saprotrophic, necrotrophic, hemibiotrophic, and 

biotrophic, are present in Sordariomycetes, all of which represent distinct survival strategies 

evolved by fungi during their interactions with their hosts, companions, and associated 

environments (Presti et al. 2015, Boddy 2016, Rai & Agarkar 2016). Due to variations in hosts and 

substrates, certain fungi can transition between different lifestyles. Transitions from the endophytic 

lifestyle to the pathogenic lifestyle and vice versa have been observed in some important fungal 

plant pathogens (O’Connell et al. 2012, Rai & Agarkar 2016, Liu et al. 2022). 

Lifestyle-associated genomic traits are an interesting area of research, as pathogenic 

transitions are highly relevant to gene gain and loss (Friesen et al. 2006, Spanu et al. 2010). 

Pyrenophora tritici-repentis (Pleosporaceae, Pleosporales, Dothideomycetes) becomes highly 

pathogenic on wheat (Triticum aestivum) by obtaining the proteinaceous host-specific toxin ToxA 

from Stagonospora nodorum (Phaeosphaeriaceae, Pleosporales, Dothideomycetes), demonstrating 

that the transfer of the virulence gene is an essential source for the emergence of new pathogens 

(Friesen et al. 2006). CgNPG1 is an effector responsible for mycelial growth, conidiation, the 

development of invasive structures, and the pathogenicity in Colletotrichum gloeosporioides Hb 

(from Hevea brasiliensis), which is thought to be acquired by horizontal transfer (Liang et al. 

2021). An exclusively biotrophic lifestyle is related to gene losses of primary and secondary 

metabolic enzymes (Spanu et al. 2010). The convergent losses of decay-related genes and the 
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expansion of symbiosis-related genes are the genetic bases for the evolution of mycorrhizal habits 

(Kohler et al. 2015). Transposable elements (TEs), also referred to as “jumping genes,” are vital 

genetic components in both eukaryotic and prokaryotic genomes. They play a significant role in 

shaping the evolution of fungal genomes by modifying genome plasticity and architecture, 

disrupting functional genes, creating novel genes, or facilitating horizontal gene transfer (Lorrain et 

al. 2021). TEs are critical contributors to fungal pathogenicity by facilitating the diversification of 

effector genes and even generating novel effector genes (Fouché et al. 2019). In addition, plant 

symbionts tend to have more TEs than animal parasites (Muszewska et al. 2017a). 

To survive within a host or a specific environment, fungi need to possess the necessary 

functional proteins to absorb nutrients and overcome physical and chemical barriers presented by 

hosts (de Jonge et al. 2011, McCotter et al. 2016, Zeng et al. 2018). Secretome refers to the 

complete secretory proteins of an organism, which are released outside the cells to decay substrates 

and interact with microbes, plants, animals, insects, and other fungi (Eastwood et al. 2011, Frey-

Klett et al. 2011, Shang et al. 2015). The fungal secretome comprises various functional groups of 

protein, including carbohydrate-active enzymes (CAZymes), proteases, lipases, small-secreted 

proteins (SSPs), and other secretory proteins of unknown functions (Alfaro et al. 2014). Many 

comparative genomic studies have focused on fungal CAZymes, searching for possible connections 

between compositions of CAZymes and fungal lifestyles (Kubicek et al. 2014, Pellegrin et al. 2015, 

Kim et al. 2016, Knapp et al. 2018, Chang et al. 2022). CAZymes encompass numerous plant cell 

wall-degrading enzymes (PCWDEs), and their composition and abundance are often associated 

with a saprotrophic lifestyle. However, this perspective has been challenged by the fact that the 

highest number of CAZymes has been observed in plant pathogenic fungi (Zhao et al. 2013, 

Kubicek et al. 2014). Fungal effectors, also called virulence factors encoded by avirulence genes, 

are potent weapons that fungal pathogens use to combat the immune systems of plants and animals 

(Stergiopoulos & Wit 2009, Kale & Tyler 2011). Most effectors play crucial roles in host-fungal 

interactions by suppressing host defenses to promote host colonization (Lu & Edwards 2016, 

Dasari et al. 2018, Wang et al. 2020). Some effectors are essential genetic factors in determining 

host specificity, which help identify potential pathogenic fungi to certain plants (Li et al. 2020). 

Effector repositories have been considered potential markers for differentiating pathogenic and 

endophytic strains in the Fusarium oxysporum species complex (Czislowski et al. 2021). 

Machine learning is a branch of artificial intelligence commonly subclassified into 

unsupervised and supervised methods (Deo 2015). The former has been used to find naturally 

occurring connections or groupings within observations based on little knowledge or even with no 

background information available regarding the outcome of the results (Camacho et al. 2018). This 

is contrasted with the supervised method, which is the construction and optimization of model-

based and well-constructed training data with observations and corresponding results (Bzdok et al. 

2018). The model is then utilized to predict the lifestyles of future instances. Both methods have 

been widely used for unearthing hidden information in extensive and complex biological data (Ma 

et al. 2014, Xu & Jackson 2019). There are many applications of machine learning in species 

delimitation, such as successfully using unsupervised machine learning methods to assign arachnid 

taxa into species (Derkarabetian et al. 2019), developing a machine learning species identifier for 

the genus Hebeloma (Bartlett et al. 2022) and predicting fungal lifestyles of Dothideomycetes 

(Haridas et al. 2020). Moreover, machine learning has been used to characterize and classify 

images of clinically and agriculturally important fungi, which avoids potentially subjective 

differences, reduces identification time, and lowers costs (Tongcham et al. 2020, Zieliński et al. 

2020). 

To mine the association patterns between genomic traits and lifestyles, as well as the 

interrelation between genomic traits and phylogeny, and to ascertain the feasibility of predicting 

lifestyles through machine learning approaches, we carried out a systematic bioinformatic analysis 

utilizing 638 Sordariomycete genomes. Firstly, we determined whether the sequencing technologies 

significantly influence genome assemblies and TE abundance, which exists theoretically and 

practically, but has never been discussed in previous studies. Secondly, based on the study of 
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Fijarczyk et al. (2022), we compared the basic genomic traits across multiple lifestyles and the 

functional protein groups. Furthermore, we considered the influence of phylogeny and compared 

the difference of numerical genomic traits at different taxonomic levels for determining lifestyle 

and phylogeny, which is the most critical determinant in shaping genomic traits. It is also an answer 

to resolve the long-standing controversy: whether differences in the secreted proteins reflect 

phylogeny or pathogenicity (Pellegrin et al. 2015). Finally, we explored whether it is possible to 

predict fungal lifestyles using machine learning algorithms. 

 

Materials & Methods  

 

Genome collection 

The taxonomic scheme of Sordariomycetes has been updated continuously 

(Maharachchikumbura et al. 2015, Hyde et al. 2020, Wijayawardene et al. 2022), whereas the 

NCBI taxonomy database does not keep up with the updates, and some genomes were assigned 

incorrect lineage information (Shen et al. 2020, Liu et al. 2022). To ensure the correctness of the 

taxonomic positions of selected genomes, a taxonomic framework table composed of all generic 

names in Sordariomycetes and the parent lineage information was prepared according to the study 

of Wijayawardene et al. (2022), and some changes were added in keeping up with the latest 

literature (Crous et al. 2021, Sun et al. 2021, Magyar et al. 2022, Sugita & Tanaka 2022). We used 

the term “Ascomycota” as the search term in NCBI’s Genome Browser 

https:/www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4890, 12 August 2022) to obtain all records 

of Ascomycota genomes, and then a table, including assembly accession, organism name, strain 

identifiers, assemble level, and release date, was downloaded. Only records of the Sordariomycete 

genomes were retained according to the generic names, and the lineage information of the genus 

were also integrated into the table. These genomes were downloaded via NCBI command line tool 

datasets. Besides, we collected several genomes from JGI MycoCosm (Grigoriev et al. 2013) with 

written permission. More details, such as lifestyles, sources, and publication records, were 

determined by tracing the original literature, the sample details, and the description of the 

corresponding BioProject records. We assigned the strains isolated from diseased plant tissues as 

plant pathogens, from decaying woods as saprobes, from insects as entomopathogens, from fungi as 

mycoparasite, from plant tissues without disease symptoms as endophytes and from diseased 

human tissues as human pathogens. Moreover, four carnivorous fungi that feed on nematodes were 

marked as nematophagous fungi, and other genomes that lacked descriptive information regarding 

lifestyle were marked as “Undetermined”. Two well-studied strains, viz. Daldinia eschscholtzii UM 

1020 and Daldinia eschscholtzii UM 1400, have two lifestyles including endophytic and 

saprotrophic lifestyles. Given that most Daldinia species were characterized as saprotrophic, we 

selected saprotrophic as the lifestyle labels in the training data. Allantophomopsis lycopodina 

ATCC 66958 (Leotiomycetes) was selected as the outgroup. 

 

Assessment of genome completeness 

Genome quality assessment is the primary step in genomic studies, which is vital for 

recognizing potential issues in subsequent analysis (Smits 2019). Benchmarking Universal Single-

Copy Orthologs (BUSCO) is an ideal dataset for quantifying genome completeness (Simão et al. 

2015) and conducting genome-scale phylogenetic inference (Shen et al. 2018, 2020, Manni et al. 

2021). Here, we used BUSCO version 5.2.2 (Manni et al. 2021) with the ascomycota_odb10 

database comprising 1,706 reference genes to assess the completeness of the genome assemblies. 

Only genomes with BUSCO gene content larger than 80% were retained for subsequent analyses. 

 

Phylogenetic inference 

The corresponding protein sequences of single-copy orthologs resulting from the BUSCO 

analysis were extracted and assembled into a single-locus dataset for phylogenetic analysis. Each 

locus dataset was aligned using MAFFT version 7.310 (Katoh et al. 2002) with options “--auto --

https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4890
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maxiterate 1000” allowing the program to automatically determine the approximate refinement 

strategy and conduct iterative refinement at most 1,000 times. Poorly aligned regions were removed 

using trimAl version 1.4 (Capella-Gutiérrez et al. 2009) with the option “-gappyout”, and the 

alignments with a length shorter than 100 were deleted. ModelFinder (Kalyaanamoorthy et al. 

2017) implemented in IQ-TREE2 (Minh et al. 2020) was used to choose the best-fit evolution 

model of each alignment based on the Bayesian Information Criterion (BIC). All single-locus 

alignments were concatenated into a supermatrix using an in-house python script. A single 

evolution model was determined by the occurrence and used in concatenation-based phylogenetic 

analyses. Maximum-likelihood analysis was conducted using IQ-TREE2 with 1000 bootstrap 

replicates of the SH-like approximate likelihood ratio test (SH-aLRT) (Guindon et al. 2010) and 

1000 bootstrap replicates of ultrafast bootstrap approximation (UFBoot) (Hoang et al. 2017) to 

estimate the reliability of each internal branch. The strain Allantophomopsis lycopodina ATCC 

66958 served as an outgroup to root the phylogeny. 

 

Identification and analysis of repetitive elements 

A de novo library of repeat consensus sequences was generated for each genome using 

RepeatModeler version 2.0.2 with search engine NCBI-RMBLAST version 2.11.0+. Next, 

repetitive sequences in genomes were identified and soft-masked using RepeatMasker version 4.1.2 

based on three repeat libraries, including the de novo library, Dfam 2.0 (Hubley et al. 2015), and 

the Repbase-derived library (20181026) (Bao et al. 2015). The abundance of transposable element 

(TE) categories was summarized using an in-house Python script and further visualized using the 

package ggplot2 in R. 

 

Recognition of the influence of sequencing strategies 

The selected genomes were mainly generated from second- and third-generation sequencing 

technologies. Given their differences in sequencing read length, we had to consider the impact of 

sequencing technology on the genome, especially in the genome completeness and TE sizes. 

Therefore, we first excluded only one genome generated from the first-generation sequencing 

technology (Sanger sequencing) and divided the other genomes into two groups according to their 

sequencing strategies. If the genome was generated using only the second-generation sequencing 

technologies or with Sanger sequencing for improvement, we marked the sequencing strategy of 

the genome as second-generation sequencing. If the genome was generated using only the third-

generation sequencing technologies (Single-molecule real-time sequencing or Nanopore 

sequencing) or with second-generation sequencing for improvement, we marked the sequencing 

strategy of the genome as third-generation sequencing. Comparative analyses of the completeness, 

continuity, and TE sizes of genomes generated from both different sequencing strategies were 

conducted to figure out whether sequencing strategies impact the number of genes and the 

abundance of TEs. We also considered the taxonomic position of the compared groups to decrease 

the influence of phylogeny on the comparative results. 

 

Gene prediction and functional annotation 

Transfer RNA (tRNA) genes in each soft-masked genome were annotated using tRNAscan-

SE version 2.0.9 with default parameters (Chan et al. 2021). Models of protein-coding genes were 

predicted using the BRAKER2 pipeline (Brůna et al. 2021), which combines robust features of 

GeneMark-EP+ (Brůna et al. 2020) and AUGUSTUS (Stanke et al. 2008). To improve gene 

prediction accuracy, fungal proteins with annotation scores above 3 in UniProtKB (Consortium 

2020) were downloaded and reduced by removing redundant protein sequences using CD-HIT 

version 4.8.1 (Fu et al. 2012). Sequence identity and alignment coverage were set to 0.8 to retain 

the representative sequences. Finally, a total of 95,251 protein sequences were used as external 

evidence for gene structure prediction. Protein hints of homologous regions in each genome were 

produced using ProtHint version 2.6.0 (Brůna et al. 2020) and further used in the BRAKER2 
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pipeline. Functional annotation, orthology assignments, and domain prediction of all predicted 

proteins were conducted using eggNOG-mapper version 2.1.3 (Cantalapiedra et al. 2021). 

 

Identification of secreted proteins and effectors 

Using the previously described widely used pipeline (Pellegrin et al. 2015, Miyauchi et al. 

2020, Mesny et al. 2021), secretory proteins were identified. In brief, proteins with signal peptides 

were identified as candidate-secreted proteins using SignalP version 4.1 with default parameters 

(Petersen et al. 2011). Then, membrane proteins were removed using TMHMM version 2.0 (Melén 

et al. 2003) by detecting the presence of the transmembrane helix. Glycosylphosphatidylinositol 

(GPI)-anchored proteins were removed using NetGPI version 1.1 (Gíslason et al. 2021) online by 

detecting GPI-anchoring signals, and proteins residing in the endoplasmic reticulum lumen were 

removed using PS-SCAN (Nielsen et al. 1997) by detecting KDEL motif (Lys-Asp-Glu-Leu) in the 

C-terminal region. Two subcellular localization prediction tools, WoLF PSORT (Horton et al. 

2007) and TargetP version 2.0 (Emanuelsson et al. 2007) were used to confirm that only proteins 

assigned extracellular tags were identified as secreted proteins. 

Secreted CAZymes including auxiliary redox (AA) enzyme families were identified using 

run_dbCAN version 3.0.7 (Zhang et al. 2018). Proteases and lipases were identified by querying 

the MEROPS database (Rawlings et al. 2017) and LED database release 3.0 (http://www.led.uni-

stuttgart.de), respectively, using BLASTp with a cut-off e-value of 1e-5. Other secreted proteins 

shorter than 300 amino acids were identified as SSPs and the remaining secreted proteins were 

marked as OTHER. Secreted effectors were identified using EffectorP version 3.0 (Sperschneider 

& Dodds 2022) with the option of fungal mode. There was no intersection between each group. 

Furthermore, we followed the grouping criteria in the study of Mesny et al. (2021) and classified 

secreted CAZymes into the plant cell wall-degrading enzymes (PCWDEs), fungal cell wall-

degrading enzymes (FCWDEs), Cellulose, Hemicellulose, Lignin, Pectin, Peptidoglycan, Mannan, 

Glucan and Sucrose. 

 

Analyses of numerical traits 

To explore which of the basic components of the genomes and the functional proteins 

determine the lifestyle, we classified the numerical traits of genome assemblies into two categories 

and constructed two numerical matrices: basic genomic features and functional protein features. 

The matrix of basic genomic features includes 25 numerical features: genome size with TEs, 

genome size without TEs, TE size, GC content of genomes, GC content of genome without TE, GC 

content of TE, the numbers of genes, tRNAs, exons and introns, respectively; the average lengths 

of genes, tRNAs, exons, introns, and intergenic regions; the minimum lengths of genes, tRNAs, 

exons, introns, and intergenic regions; the maximum lengths of genes tRNAs, exons, introns, and 

intergenic regions. The matrix of functional protein features includes 24 numerical features: total 

secreted proteins, the effectors, proteases, lipases, SSPs, CAZymes, GHs, GTs, PLs, CEs, AAs, 

CBMs, PCWDEs, FCWDEs, cellulose-, hemicellulose-, lignin-, pectin-, peptidoglycan-, mannan-, 

glucan-, chitin-, sucrose-degrading enzymes and other functional proteins. The numbers of these 

features were summarized using in-house Python scripts. 

Correlations were calculated for the two main categories, and details were characterized in 

the captions of the corresponding figures. To make the comparative analysis more reliable, we 

excluded those groups with fewer than 10 genomes. Overall comparisons were conducted to detect 

changes in these numerical traits across taxonomic ranks and lifestyles. Post hoc pairwise multiple 

comparisons were performed to discover how many pairwise comparisons were significantly 

different based on different grouping criteria and to explore which features were helpful in 

differentiating taxonomic groups and lifestyles. 

 

Predicting lifestyles using machine learning algorithms 

Six commonly used machine learning algorithms for multi-class classification implemented 

in the Python library scikit-learn (https://scikit-learn.org): Random Forests (RF), Decision Tree 
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(DT), Naive Bayes (Bayes), Support Vector Machine (SVM), Logistic Regression (LR) and K-

Nearest Neighbors (KNN). These algorithms were used to predict fungal lifestyles, and the 

predictive accuracies of these algorithms were compared to determine the best classifier. Three 

matrices, including the basic genomic features (25 numerical traits), functional protein groups (24 

numerical traits), and combined dataset of them (49 numerical traits) were used during the training 

and prediction stages for selecting the most suitable dataset. The genomes with undetermined 

lifestyles were excluded from the datasets. First, we standardized the values of features using the 

function StandardScaler. Next, features with low variances were detected and removed using the 

function VarianceThreshold with default parameters. Then, the dataset was split into the train 

(70%) and test subsets (30%) using the function train_test_split, and the parameters of the best 

suitable estimator were determined using the function GridSearchCV. The performance of the 

estimator was evaluated using the function cross_val_score with 5 replicates based on the test 

subset. Finally, we used the best estimator to predict the lifestyles of unlabeled genomes. 

 

Results 

 

Genome information 

A total of 638 representative genomes from 5 subclasses, 17 orders, 50 families, 147 genera 

and 614 species, were selected in this study. More detailed information is described in Supporting 

Information Supplementary Table 1. The subclass Hypocreomycetidae accounted for 73.20% (n = 

467) of the genomes (Supplementary Table 2: sheet subclass-count), and ten orders were best 

represented, such as Hypocreales, Glomerellales and Microascales, the number of which range 

from 3 to 363 (Supplementary Table 2: sheet order-count). The other orders contain only one 

genome except for three genomes that have not yet been classified in any of the established orders 

with certainty. Through a comprehensive survey of scientific literature and related databases, we 

indirectly obtained lifestyle descriptions of most strains (86.68%, n = 553) and further classified 

these strains into eight groups by their host and tropic mode (Supplementary Table 2: sheet 

lifestyle-count). The most common lifestyle is plant pathogens, which occupy 58.31% (n = 372) of 

the total genomes, followed by saprotrophs at 12.23% (n = 78), entomopathogens at 6.74% (n = 

43), mycoparasites at 3.29% (n = 21), endophytes at 2.98% (n = 19), human pathogens at 2.51% (n 

= 16) and nematophagous fungi at 0.63% (n = 4). The remaining 85 genomes (13.32%) were 

temporarily marked as “Undetermined”. We also traced the sequencing technologies of these 

genomes (Fig. 1, Supplementary Table 2: sheet wgs-count), and summarized that 74.92% (n = 478) 

of them were sequenced using second-generation sequencing technologies, 24.92% (n = 159) were 

sequenced using third-generation sequencing technologies and only one genome was sequenced 

using Sanger sequencing technology. 

 

Lifestyle occurrences in Sordariomycetes groups 

Based on the genome data in this study, seven lifestyles, viz. plant pathogens, saprotrophs, 

entomopathogens, mycoparasites, endophytes, human pathogens and nematophagous fungi were 

determined across 553 Sordariomycete genomes, but with different occurrences at the subclass, 

order and family levels (Fig. 1, Supplementary Table 2: sheet subclass-lifestyle). In the more fully 

sampled groups, we observed more diverse lifestyles. For instance, the most-sampled subclasses 

Hypocreomycetidae and the subordinate order Hypocreales comprise all seven lifestyles, whereas 

the subclass Sordariomycetidae and Xylariomycetidae only comprise four and three kinds of 

lifestyles, respectively. At the order level (Supplementary Table 2: sheet order-lifestyle), the order 

Ophiostomatales comprises five kinds of lifestyles only inferior to the Hypocreales, which includes 

seven lifestyles. We compared lifestyles in these two orders at the family level. Ophiostomataceae 

and Nectriaceae were predominant for plant pathogens; Hypocreaceae was noticeable for 

saprotrophs; Ophiocordycipitaceae and Clavicipitaceae were conspicuous for entomopathogens. 

We also compared the distribution of lifestyles at different taxonomic levels (Supplementary Table 

2: sheets lifestyle-subclass, lifestyle-order and lifestyle-family). Endophytes, saprotrophs, and plant 
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pathogens are present in four subclasses, followed by human pathogens, present in three subclasses, 

and entomopathogens and mycoparasites, present in two subclasses. Four genomes with the 

lifestyle of nematophagous fungi are only present in Hypocreomycetidae. At the order and family 

level, plant pathogen is the most common lifestyle in 11 orders and 29 families, followed by 

saprotrophs in 9 orders and 19 families, endophytes and in 5 orders and 10 families, and human 

pathogens in 5 orders and 5 families. 

 

 
 

Figure 1 – Maximum likelihood (ML) phylogeny of 638 taxa in the class Sordariomycetes. The 

concatenation-based ML phylogeny (lnL = −134,234,602.321) was reconstructed based on an 

amino acid dataset of 1,124 BUSCO genes (total of 884,972 sites) under the LG + G4 evolution 

model. The sequencing strategies are shown in different shapes (when multiple sequencing 

strategies were conducted for generating the genomes, we just marked the sequencing strategy by 

the most advanced technology). Lifestyles are indicated using different fill colors. Guanine-

cytosine (GC) content of the genome and genome without transposable elements (TEs) are 

indicated by a line chart. Genome size and TE sizes are indicated using stacked bar charts. This 

figure was plotted using the packages ggtree version 3.4.4 (Yu et al. 2017) and ggtreeeExtra 
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version 1.6.1 (Xu et al. 2021) in R (R Core Team 2022), with the dataset provided in 

Supplementary Table 1. 

 

Influence of sequencing technologies on TE size 

The genomes were generated from first-generation, second-generation, and third-generation 

sequencing platforms, which account for 0.16% (n = 1), 74.92% (n = 478), and 24.92% (n = 159) 

of the total number of genomes. To recognize the potential influences of sequencing technologies 

on subsequent numerical analysis, we compared the completeness, continuity, and TE sizes of 

genomes generated from second- and third-generation sequencing technologies (Supplementary 

Table 3). There is no significant difference (p = 0.08) in BUSCO completeness (Fig. 2a). However, 

we observed significant differences in the number of contig/scaffold (Fig. 2b, p < 2.2e-16) and the 

N50 value (Fig. 2c, p < 2.2e-16), which suggests that the genomes generated from third-generation 

technologies are better in genomic continuity than that generated from second-generation 

sequencing technologies. We also investigated whether the sequencing technologies influence the 

TE size and found that the genomes generated from third-generation sequencing technologies have 

a larger size of TEs than second-generation sequencing technologies (Fig. 2d). We compared TE 

size between the two well-sampled families, and significant differences were also observed in the 

genomes of Glomerellaceae (Fig. 2e, p = 0.0019) and Nectriaceae (Fig. 2f, p = 6.1e-06). Due to the 

non-negligible impact of sequencing technology on TE size, we did not explore further the 

relationships between lifestyles and the abundance of TEs. The abundance of TEs is provided in 

Supplementary Table 1 and visualized in Supplementary Fig. 1. 

 

 
 

Figure 2 – Comparative analyses of genome completeness, continuities, and TE sizes of genomes 

generated by second- (2nd) and third-generation (3rd) sequencing strategies. a Bar plot of BUSCO 

completeness to represent the genome completeness. b, c Bar plots of the number of 

contigs/scaffolds and the value of N50 to represent the continuities. N50 is the shortest contig 

length that needs to be included for covering 50% of the genome, which is a measure to indicate the 
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quality of assembled genomes that are fragmented in contigs of different lengths. The larger 

number of contigs/scaffolds means a more fragmented genome. The larger N50 value means a more 

contiguous genome. d–f Bar plots of TE size at the class and family levels to present the influence 

of sequencing technologies on TE size. Shapiro-Wilk test was conducted (the function stats:: 

shapiro.test) to check whether the compared datasets follow a normal distribution, and the results 

suggested that these datasets are not normally distributed. Thus, Wilcoxon Rank Sum and Signed 

Rank Tests were conducted (the function ggpubr::stat_compare_means) to test whether the 

compared datasets are significantly different (p≤ 0.05). All bar plots were plotted using the package 

ggpubr. For visualization, few data points above 2,000 in subfigure b, data points above 8 Mb in 

subfigure c, and data points above 10 Mb in subfigure d and e, are not displayed. The input dataset 

is given in Supplementary Table 1, and all resulting tables are given in Supplementary Table 3. 

Statistical analyses and visualization were done in R (R Core Team 2022). 

 

Variations of basic genomic features 

We counted a total of 25 basic genomic features, which are summarized in Supplementary 

Table 1. Results of correlation analyses among these features suggested that some features are 

highly correlated (Fig. 3, Supplementary Table 4). Genome size is positively correlated with TE 

size with a Pearson’s correlation coefficient of 0.63, which is smaller than its correlation coefficient 

with the genome size without TEs (r = 0.86), suggesting that the TEs can increase the genome size 

but not the dominant factor. GC content is positively correlated to the GC content without TEs (r = 

0.85) but negatively related to the TE size (r = -0.46). In addition, GC content with TEs or without 

TEs is influenced by TE size; the larger TE size was the main factor for the larger differences 

observed between them, suggesting that TEs decrease the GC content of genomes. Genome size 

without TE is positively correlated to the number of genes (r = 0.91), the number of exons (r = 

0.90), and the number of introns (r = 0.88). The latter two features, exons, and introns are important 

structural components of genes, the numbers of which reasonably displayed high correlations with 

the number of genes (r = 0.97; r = 0.93). The average length of genes is correlated to the average 

length of introns (r = 0.78) and the exons (r = 0.48), indicating that changes in intron length are the 

leading cause of the variation of gene length compared to the exon. TE size is positively correlated 

to the average and maximum lengths of intergenic regions (r = 0.60; r = 0.47) but not displays 

significant correlations with gene structures including gene length, exon length, and intron length, 

suggesting that TEs are the main factor to change the distance between genes without significant 

influence on the gene structures. The minimum and maximum lengths of multiple features (genes, 

intergenic regions, introns, exons) exhibit relatively low correlations with other features, or 

correlations are not significant, except for the maximum length and the average length of intergenic 

regions (r = 0.70), the maximum length and the average length of introns (r = 0.6) and the 

minimum length of introns and genes (r = 0.7). Overall, most basic genomic features display a low 

correlation with each other, suggesting some of which are stable and independent in evolution.  

We also compared the group means of these 25 genomic features over all different taxonomic 

ranks and lifestyles (Supplementary Table 5). We observed overall statistically significant 

differences in most genomic features (22/25) at the subclass level, excluding the minimum length 

of exons, TE sizes, and the minimum length of tRNAs (Supplementary Table 5: sheet subclass). 

The minimum length of exons is the only feature that does not show a significant difference at the 

order level (Supplementary Table 5: sheet order). Furthermore, at the family level all features 

display significant differences (Supplementary Table 5: sheet family). Considering the groups with 

different lifestyles, there are 6 genomic features without significant difference (Supplementary 

Table 5: sheet lifestyle), which are the minimum length of exons, the average length of intergenic 

regions, the minimum length of intergenic regions, the size of TEs, the GC content of TEs and the 

maximum length of tRNAs. In paired comparison analysis (Fig. 4), the 4 subclasses 

Diaporthomycetidae, Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae formed 6 

pairwise comparisons, 5 of which are significantly different in most features (Supplementary Table 

5: sheet pairwise-subclass). Significantly, the number of genes and the number of exons display the 
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most powerful resolution to differentiating the taxonomic groups at the subclass level. At the order 

level (36 pairwise comparisons in total) and family level (91 pairwise comparisons in total), we 

observed a clear downward trend of significant differences, suggesting that all features lack 

resolutions at lower taxonomic levels (Supplementary Table 5: sheets pairwise-order and pairwise-

family). However, relatively low proportions of significantly different comparisons (15 pairwise 

comparisons) were observed across all features between different lifestyles (Supplementary Table 

5: sheet pairwise-lifestyle). Moreover, clustering analysis shows that several features (TE size, the 

minimum length of tRNAs, the minimum length of exon, and the minimum length of gene) display 

little usefulness in distinguishing different taxonomic groups, and most features are useless in 

differentiating different lifestyles. 

 

 
 

Figure 3 – Correlation analysis of 25 basic genomic features. Ladder heatmap of Pearson 

correlation coefficients of all pairwise genomic features. The colors and values in small squares 

indicate the degree of positive correlation (red) or negative correlation (blue). No significant 

correlated comparisons (p > 0.05) were displayed in white and blank squares. Pearson correlation 

coefficients were calculated (the function stats::cor), and the significance test was conducted (the 

function corrplot::cor.mtest). The figure was plotted using the package corrplot with the resulting 

datasets in Supplementary Table 4. Values of these 25 features are provided in Supplementary 

Table 1. 
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Although, not all features showed strong discrimination in distinguishing one group from the 

other groups, a high proportion of significant differences in some genomic features was observed in 

specified comparisons. For instance, at the subclass level (Supplementary Table 5: sheet class-

class), there are 18, 17, 15, 15 and 15 significantly different features present in the pairwise 

comparisons of Hypocreomycetidae-Xylariomycetidae, Hypocreomycetidae-Sordariomycetidae, 

Diaporthomycetidae-Hypocreomycetidae, Diaporthomycetidae-Xylariomycetidae and 

Sordariomycetidae-Xylariomycetidae. Likewise, a high proportion of some features were observed 

at the order and family levels (Supplementary Table 5: sheets order-order and family-family). 

These results suggest that some features are useful in differentiating specified taxonomic groups, 

especially in phylogenetically distant comparisons. As for lifestyles, the largest differences in 

genomic features were observed in the comparisons of entomopathogens-plant pathogens (15/25), 

followed by entomopathogens-endophytes (9/25), and the rest of the comparisons displayed 

minimal differences at best, especially in the comparisons of endophytes-saprotrophs (0/25, 

mycoparasites-saprotrophs (0/25), endophytes-mycoparasites (0/25), human pathogens-

mycoparasites (1/25), human pathogens-plant pathogens (1/25), and human pathogens-saprotrophs 

(1/25) (Supplementary Table 4: sheet lifestyle-lifestyle). It suggests that based on these basic 

genomic features it is difficult to differentiate compared lifestyles. In other words, we could not 

correctly assign a lifestyle label for a new taxon with very similar genomic features, to endophytes, 

saprotrophs, mycoparasites and entomopathogens. 

 

 
 

Figure 4 – Resolution powers of 25 basic genomic features in differentiating different taxonomic 

groups and lifestyles. Stacked bar plots of the number of significantly (orange; p < = 0.05) and non-

significantly (green; p > 0.05) different comparisons across all features based on their taxonomic 

ranks and lifestyles. Dunn test (the function rstatix::dunn_test) was used to compare the mean.  

The cluster analysis was performed (the function stats::dist) with the dataset in Supplementary 

Table 4 sheet: clustering-matrix to obtain a Euclidean distance matrix, then to cluster these features 
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with the “complete” agglomeration method (the function stats::hclust). All datasets are given in 

corresponding sheets in Supplementary Table 5. 

 

Overview of functional protein groups 

A total of 24 functional protein groups were summarized in Supplementary Table 1 and 

visualized in Supplementary Fig. 2. To explore the correlation between the number of the proteome 

and the number of each functional protein group we include the feature of proteomes equivalent to 

the number of protein-coding genes in the last part of the correlation analysis (Fig. 5; 

Supplementary Table 6). The result shows that 66.67% (16/24) of protein groups are highly 

positively correlated (r > 0.6) with the total number of the proteome. The main subgroups of the 

secretome, the number of CAZymes, protease, lipase, SSPs, secreted effectors and other functional 

proteins are highly positively correlated with the total number of secretomes with the Pearson 

correlation coefficient of 0.95, 0.93, 0.86, 0.87, 0.96 and 0.97, respectively. The six subgroups of 

CAZymes display varying degrees of correlation with the total number of CAZymes. The AAs, 

GHs, CEs and PLs display high correlation with the Pearson correlation coefficient of 0.97, 0.97, 

0.88 and 0.88, respectively. The number of CBMs displays a relatively high correlation (r = 0.57) 

with CAZymes, whereas the GTs display a low correlation (r = 0.29) with CAZymes. As for the 

more specified functional subgroups of CAZymes, the numbers of PCWDEs, pectin-degrading 

enzymes, hemicellulose-degrading enzymes, and cellulose-degrading enzymes, are highly 

correlated with the total number of CAZymes with the Pearson correlation coefficients of 0.97, 

0.90, 0.89 and 0.87, respectively, followed by lignin-degrading enzymes and glucan-degrading 

enzymes with relatively high correlation coefficients of 0.54 and 0.51. The numbers of FCWDEs, 

chitin-degrading enzymes and mannan-degrading enzymes display relatively low correlation with 

CAZymes, the correlation coefficients of which are 0.41, 0.31 and 0.22 respectively, and no 

significant correlation was observed between peptidoglycan-degrading enzymes and CAZymes. We 

also noticed the high correlations between several specified functional subgroups of CAZymes, 

such as FCWDEs and chitin-degrading enzymes with correlation coefficients of 0.9, FCWDEs and 

glucan-degrading enzymes with correlation coefficients of 0.82, which are mainly due to the 

overlapping functional proteins (Supplementary Table 6). Compared with the correlation matrix of 

genomic features (Fig. 3), most functional proteins are more stable in number, showing a trend of 

co-evolution except for mannan-degrading enzymes, GTs, and peptidoglycan-degrading enzymes.  

The discrimination of these 24 functional protein groups was visualized by comparing the 

numbers of significantly different pairwise comparisons and not significantly different pairwise 

comparisons (Fig. 6, Supplementary Table 7). Compared with the discrimination of 25 basic 

genomic features, apparent increases in functional protein groups were observed at the taxonomic 

levels and lifestyles. At the subclass level, more than half (15/24) of these protein groups are 

powerful in differentiating subclasses (n > 3, Supplementary Table 7: sheet cluster-matrix), 

especially the number of CBMs and mannan-degrading enzymes with 100% resolution 

(Supplementary Table 7: sheet pairwise-subclass). However, CEs, hemicellulose-degrading 

enzymes and PCWDEs display low resolution, especially the latter two. At the order and family 

levels (Table S7: sheets pairwise-order and pairwise-family), the numbers of significantly different 

pairwise comparisons increase with the total number of pairwise comparisons, but the proportion of 

significantly different pairwise comparisons for each protein group decreases, most notably in 

CBMs and mannan-degrading enzymes. Although the numbers of PCWDEs and hemicellulose-

degrading enzymes are insignificant in differentiating subclasses, we noticed that PCWDEs can 

distinguish more than half of the pairwise comparisons at the order level (23/36) and the family 

level (48/91), and hemicellulose-degrading enzymes can distinguish more than half of the pairwise 

comparisons at the order level (19/36) and nearly half at the family level (39/91). In regards to 

lifestyles (Supplementary Table 7: sheet pairwise-lifestyle), we noted distinct decreases in the 

proportion of significantly different pairwise comparisons for certain protein groups, as well as 

observed increased proportions, such as glucan-, cellulose-, and hemicellulose-degrading enzymes. 
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Figure 5 – Correlation analysis of 24 functional protein groups and proteomes. Ladder heatmap of 

Pearson correlation coefficients of all pairwise genomic features. The colors and values in small 

squares indicate the degree of positive correlation (red) or negative correlation (blue). No 

significant correlated comparisons (p > 0.05) were displayed in white and blank squares. Pearson 

correlation coefficients were calculated (the function stats::cor), and the significance test was 

conducted (the function corrplot::cor.mtest). The figure was plotted using the package corrplot with 

the resulting datasets in Supplementary Table 6. Values of these 24 functional protein groups and 

the total number of proteomes are provided in Supplementary Table 1. 

 

We also counted the significantly different protein groups in each pairwise comparison. At 

the class level (Supplementary Table 7: sheets subclass-subclass), the most notable subclass is 

Xylariomycetidae, which has 17 significantly different protein groups with Diaporthomycetidae, 16 

with Hypocreomycetidae and Sordariomycetidae. The smallest difference was observed in the 

pairwise comparison of Diaporthomycetidae and Sordariomycetidae with 12 significantly different 

protein groups. In other words, Xylariomycetidae is the easiest to be distinguished from other 

subclasses. At the order level (Supplementary Table 7: sheet order-order), the most notable order is 

Ophiostomatales, which has 22 significantly different protein groups with Glomerellales and 
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Hypocreales, 21 with Amphisphaeriales, 20 with Diaporthales, 19 with Magnaporthales. The minor 

differences are observed in the pairwise comparisons of Magnaporthales-Amphisphaeriales, and 

Magnaporthales-Diaporthales. Moreover, Magnaporthales has only 2 significantly different protein 

groups as compared to Glomerellales, 4 with Hypocreales and Xylariales, indicating that it is not 

easy to distinguish Magnaporthales from the compared orders based on most functional protein 

groups. At the family level (Supplementary Table 7: sheet family-family), the most significant 

number of significantly different protein groups is 23, which is observed in three pairwise 

comparisons of Ceratocystidaceae-Nectriaceae, Glomerellaceae-Ophiostomataceae and 

Nectriaceae-Ophiostomataceae. Inversely, the smallest number is 1, which is observed in two 

pairwise comparisons of Bionectriaceae-Nectriaceae and Clavicipitaceae-Ophiocordycipitaceae. 

For lifestyles (Supplementary Table 7: sheet lifestyle-lifestyle), plant pathogens are the easiest to be 

distinguished from saprotrophs, entomopathogens and mycoparasites, and they have 21, 20, and 17 

significantly different protein groups, respectively. No significantly different protein group is 

present in multiple pairwise comparisons including endophytes-plant pathogens, endophytes-

saprotrophs, and mycoparasite-saprotrophs, indicating that we cannot differentiate them based on 

the number of functional proteins. 

 

 
 

Figure 6 – Contributions of 24 functional protein groups in differentiating different taxonomic 

groups and lifestyles. Stacked bar plots of the number of significantly (orange; p <= 0.05) and non-

significantly (green; p > 0.05) different comparisons across all features based on their taxonomic 

ranks and lifestyles. Dunn test (the function rstatix::dunn_test) was used to compare the mean. The 

cluster analysis was performed (the function stat::dist) with the dataset in Supplementary Table 7 

sheet: cluster-matrix, to obtain a Euclidean distance matrix, then to cluster these features with the 

“complete” agglomeration method (the function stats::hclust). All datasets are given in 

corresponding sheets in Supplementary Table 7. 
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Predicted lifestyles using machine learning approaches 

Predictive models of six commonly used machine learning algorithms were trained and 

optimized based on the training subsets of three different datasets, and accuracies in predicting 

fungal lifestyles were compared and visualized in Fig. 7 (Supplementary Table 8). For the dataset 

of basic genomic features, KNN was the best classifier with an average accuracy of 0.7631, 

followed by RF (0.7604), SVM (0.7475), DT (0.6719) and Bayes (0.5445); LR was the worst with 

an average accuracy of 0.5159. For the dataset of the functional protein groups, KNN still was the 

best classifier with an average accuracy of 0.8229, followed by RF (0.8100), SVM (0.8100), DT 

(0.6953) and Bayes (0.6094); LR was the worst with an average accuracy of 0.5602. For the 

combined dataset including a total of 49 numerical features, RF was the best classifier with an 

average accuracy of 0.8230, followed by KNN (0.8151), SVM (0.7813), DT (0.6850) and LR 

(0.6018; Bayes was the worst with an average accuracy of 0.5964. Regarding machine learning 

algorithms, KNN, SVM and RF performed better than LR, Bayes and DT in predictive accuracies 

across the three datasets (Fig. 7 a, c, e). Bayes, DT, RF and SVM obtained the highest-average 

accuracies based on the functional protein groups, and the other two methods, KNN and LR, were 

based on the combined datasets. We noticed that all classifiers obtained the worst-average 

accuracies based on the primary genomic feature alone and increased accuracies were observed 

based solely on a functional protein dataset or combined dataset (Supplementary Table 8: sheet 

average-accuracy), indicating that numerical traits of functional protein groups are more valuable 

than basic genomic features for the prediction of fungal lifestyles. 

Based on the test subsets, we tested the performance of the three best classifiers, KNN for the 

dataset of basic genomic features and functional protein groups, and RF for the combined dataset. 

For the dataset of basic genomic features (Fig. 7b), we noticed that 97.37% of plant pathogens were 

assigned the correct lifestyles, suggesting that KNN is reliable for distinguishing plant pathogens 

from other lifestyles. However, it performed worse in differentiating endophytes, human pathogens 

and mycoparasites from other lifestyles. Predictive results of all endophytes, human pathogens and 

mycoparasites did not match the assigned lifestyles we determined by a literature survey or the 

genomic descriptions. More than half of the endophytes (66.67%) were incorrectly predicted as 

saprotrophs, and some other genomes were incorrectly recognized as entomopathogens.  

Of mycoparasites, 75% were incorrectly predicted as plant pathogens and 25% as saprotrophs.  

Of human pathogens, 83.33% of them were incorrectly predicted as plant pathogens and 16.67% as 

mycoparasites. As for the other three lifestyles, KNN obtained relatively high accuracies. Of 

entomopathogens, 57.14% were correctly classified, 35.71% were incorrectly predicted as plant 

pathogens and 7.14% as endophytes. Of plant pathogens, 97.37% were correctly classified, and the 

rest were incorrectly predicted as entomopathogens (1.75%) and saprotrophs (0.88%).  

Of saprotrophs, 62.50% were correctly predicted as saprotrophs, 33.33% were incorrectly predicted 

as plant pathogens, and 4.17% as mycoparasites. Concerning the dataset of function protein groups 

(Fig. 7d), KNN algorithm yield better predictions, especially in differentiating entomopathogens 

(57.14% to 92.86%), human pathogens (0 to 33.33%), mycoparasites (0 to 50%) and saprotrophs 

(62.50% to 70.83%). Compared with the predication based on the dataset of genomic features, 

KNN resulted in the incorrect prediction in differentiating endophytes, and slightly decreased 

accuracy in predicting saprotrophs. As for the combined dataset (Fig. 7f), RF algorithm was used to 

predict lifestyles, and we observed a clear improvement in predictive accuracies for endophytes, 

entomopathogens and plant pathogens. 

We obtained the highest accuracy of 0.8230 for RF algorithm based on the combined dataset, 

therefore, we used RF to conduct the prediction of 85 genomes with undetermined lifestyles, and 

the predicted lifestyles with probabilities were listed in Supplementary Table 9. RF classified these 

85 genomes into 4 lifestyles including 77 plant pathogens, 3 entomopathogens, 3 mycoparasites 

and 2 saprotrophs. We further checked the taxonomic positions of strains, 77 plant pathogens in 23 

families; 3 entomopathogens in Ophiocordycipitaceae and Ophiostomataceae; 3 mycoparasites in 

Bionectriaceae, Clavicipitaceae and Cordycipitaceae; 2 saprotrophs in Sordariaceae and 

Hypoxylaceae. We traced the lifestyles of phylogenetically close groups with predicted genomes, 
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and 80 genomes were assigned lifestyle labels, and the lifestyles of 54 genomes were consistent 

with our predictions. 

 

 
 

Figure 7 – Lifestyle predictions using machine learning methods. a Boxplots of predictive 

accuracies using six machine learning algorithms for predicting fungal lifestyles based on the 

training subset of the basic genomic features. b Confusion matrix, a performance matrix, to 

evaluate the performance of the best classifier (KNN, accuracy = 0.7631) in predicting fungal 

lifestyles based on the test subset of the basic genomic features. c Predictive accuracies of the six 

commonly used machine learning algorithms based on the train subset of the functional protein 

features. d Confusion matrix of the best classifier (KNN, accuracy = 0.8229) in predicting fungal 

lifestyles based on the test subset of the functional protein groups. e Predictive accuracies of the six 
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commonly used machine learning algorithms based on the combined datasets. f Confusion matrix 

of the best classifier (RF, accuracy = 0.8230) in predicting fungal lifestyles based on the test subset 

of the functional protein groups. For the confusion matrix, the diagonal elements show the 

proportion of correctly classified genomes, while the off-diagonal elements show the number of 

misclassified genomes. 

 

Discussion 

 

Diverse lifestyles but unbalanced whole genome sequencing 

Sordariomycetes has a large number of available genome sequences for an ascomycetes class 

in public databases; however, many of these genomes are restricted to economically important 

groups such as plant pathogens (Calonectria, Claviceps, Collectotrichum, Diaporthe, Fusarium), 

entomopathogens (Cordyceps, Metarhizium, Ophiocordyceps, Tolypocladium), mycoparasites 

(Clonostachys), human pathogens (Sarocladium, Scedosporium, Sporothrix) model organism 

(Neurospora), and potential biocontrol agents and prolific secondary metabolite producers 

(Daldinia, Trichoderma, Xylaria). For instance, Hypocreomycetidae includes plant pathogens, 

entomopathogens, mycoparasites, human pathogens and biocontrol agents and is responsible for 

73.20% of the total Sordariomycete genome used in this study. However, the Sordariomycetes 

include other ecologically important saprotrophs, epiphyllous, hypophyllous, facultatively 

lichenised, fungicolous and extreme inhibiting groups primarily overlooked due to their 

economically insignificance. Therefore, the current genomic data are mainly incomplete and cannot 

be used to make reliable conclusions about the overall lifestyle of Sordariomycetes fungi. Saprobes 

are the most common type of fungi, and Sordariomycetes now comprises 195 families, and 171 

have a saprobic lifestyle. This is true as many of these fungi can degrade polymers of varying 

complexity by releasing extracellular enzymes that break down plant and animal debris. We suspect 

that saprobic Sordariomycete families will likely be more than this as the remaining families are 

poorly sampled or monotypic. Plant pathogens are the second most abundant lifestyle in 

Sordariomycetes, distributed over 93 families. The five most significant Sordariomycetes orders, 

Diaporthales, Glomerellales, Hypocreales, Microascales and Ophiostomatales, each contain many 

highly destructive plant pathogens. These include some of the most important diseases of the cereal 

(rice, wheat, barley, and maize) ornamental, fruit, vegetable, and wild crops (Chang et al. 2018, 

Talhinhas & Baroncelli 2021, Liu et al. 2022, Han et al. 2023). Endophytes are distributed over 40 

families of Sordariomycetes. There is publishable evidence that fungal endophytes can switch 

lifestyles to saprotrophs and pathogens and vice versa (Promputtha et al. 2007, 2010). Human 

pathogens, entomopathogens, mycoparasites and nematophagous fungi are distributed over 17, 11, 

5 and 2 families of Sordariomycetes, respectively. The least distributed nematophagous fungi are 

only in Hypocreales families Clavicipitaceae and Ophiocordycipitaceae. Their diverse lifestyles and 

ability to switch to other life modes and inhibit diverse ecological niches that include extreme 

environmental constraints allow Sordariomycetes to adapt and distributed over all ecosystems on 

earth and to be the second largest ascomycetes class. 

 

Influence of sequencing technologies on genome assemblies 

High-quality genome assemblies are fundamental for genomic studies. Therefore, when we 

used genomes from public databases, we were meticulous in checking their quality, which was 

inevitably affected by the methods of DNA extraction (Nouws et al. 2020), sequencing 

technologies (Lang et al. 2020, Murigneux et al. 2020) and assembly algorithms (Miller et al. 2010, 

Meng et al. 2022). As users of public genomes, although we cannot improve genome assemblies by 

optimizing these steps, recognizing the inaccuracies of genome assemblies reduces the possibility 

of drawing incorrect conclusions. Repetitive DNA sequences present technical challenges for 

assembly algorithms by bringing in ambiguous alignment during genome assemblies, leading to 

biases and errors in final assembly results (Treangen & Salzberg 2012, Tørresen et al. 2019). For 

instance, fungal ribosomal RNA genes (rDNA) as multiple-copy segments organized in tandem 
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arrays exist in genomes (Cooper 2000). Each repeat unit (18S rRNA-internal transcribed spacer 1-

5.8S rRNA-internal transcribed spacer 2-28S rRNA-intergenic spacer) is approximately 9kb in 

length (Sone et al. 2000, Salim et al. 2017), which far exceeds the read length limit of second-

generation sequencing, and the reads generated from second-generation sequencers cannot span this 

kind of long repetitive sequence (Treangen & Salzberg 2012). Assembly algorithms, such as the 

Greedy strategy, Overlap-Layout-Consensus strategy, and de Bruijn graph strategy, tend to 

assemble these highly similar or identical sequences into single, collapsed contig (Treangen & 

Salzberg 2012). Although third-generation sequencing technologies, also called long-read 

sequencing technologies, can overcome the read length limit by producing 20–200 kb reads 

(Goodwin et al. 2016). The high cost per genome hinders its widespread application, especially in 

some fungal species lacking direct economic interest. Furthermore, our previous study (Chen et al. 

2022) found that second-generation sequencing technologies can provide reliable genome 

assemblies for phylogenomic analyses focusing on protein-coding genes rather than repetitive 

sequences. In this study, we included 638 genomes, most of which were generated using second-

generation sequencing technologies (n = 478, 74.92%). We set the completeness threshold at 80% 

to remove the unreliable genomes, and confirmed that each group included at least 10 genomes 

during statistical analyses. Hence, we believe that sequencing strategies did not influence the 

numerical traits meaningfully.  

TEs are mobile genetic elements that are composed of diverse members, including short 

interspersed nuclear elements (SINEs), Helitrons, Alus, endogenous retroviruses (ERVs), DNA 

transposons and retrotransposons (Wicker et al. 2007). The ability to move and their repetitive 

nature make TEs key drivers of genome evolution (Dhillon et al. 2019, Senft & Macfarlan 2021). 

Many studies have shown that the expansion of TEs resulted in a significantly expanded genome in 

fungal species, such as Cenococcum geophilum (Peter et al. 2016), Zymoseptoria tritici (Oggenfuss 

et al. 2021) and Lactarius species (Lebreton et al. 2022). Large-scale genomic location analysis of 

TEs has indicated that most TEs are evolutionarily neutral, but animal-related and pathogenic fungi 

include more TEs inserted in genes than fungi with other lifestyles (Muszewska et al. 2019). 

Kirkland et al. (2018) reported that hAT or Gypsy TEs located within 1kb of protein-coding genes 

could decrease the expression of related genes. LTR retrotransposons, a class I transposable 

element, inserted in the MFS1 promoter region resulted in MFS1 overexpression and multidrug 

resistance phenotype in the wheat pathogen Zymoseptoria tritici (Omrane et al. 2017). TEs are 

important and biologically functional repetitive sequences, the abundance of which in genomes is 

inevitably affected by sequencing technologies, especially second-generation sequencing 

technologies. In this study, we recognized that TE sizes in the genomes generated from second-

generation sequencing technologies are significantly smaller than those from third-generation 

sequencing technologies. We also discovered that the GC content of TEs is significantly lower than 

other regions in the genomes, and that TE sizes are negatively correlated with the overall GC 

content of fungal genomes. Hu et al. (2022) showed that GC content positively correlates with 

growth temperature in prokaryotes, and Šmarda et al. (2014) reported that increased GC content 

helps plants adapt to seasonally cold and/or dry climates. Considering the evident influence of 

sequencing technologies, the actual abundance of TEs in most genomes has been underestimated in 

previous studies and this study. Therefore, instead of providing a more in-depth analysis, we only 

compared the abundance of TEs in multiple groups and displayed their diversity in Supplementary 

Table 1 and Supplementary Fig. 2. We did not observe a significant difference in TE sizes between 

lifestyles; thus, the underestimated abundance in this study did not affect our statistical and 

predicted results. However, future studies related to TEs should consider the influence of 

sequencing technologies. 

 

Effectors are not reliable indicators for disease-related fungi but are useful for differentiating 

specific lifestyles 

Effectors, recognized as vital virulence factors secreted by bacteria (Yu et al. 2020), fungi 

(Stergiopoulos & Wit 2009), and oomycetes (Birch et al. 2006), either function in the interaction 
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space between hyphae and host cells or are transferred into host cells to subvert host immunity.  

A successful fungal infection with significant disease symptoms is a complicated process that 

depends on the result of the battle between the pathogen and its host (GS 1996). When pathogens 

start to invade a host, the innate immune system is activated by recognizing microbial invariant 

molecular patterns (also known as pathogen-associated molecular patterns, PAMPs) (Akira et al. 

2006). In fungi, chitin, the important cell wall component, is one of the main PAMPs, which is 

recognized by pattern-recognition receptors (PRRs) located in the host membrane (Boller 1995), 

and further activates important chemical pathways and specific gene expressions to eliminate 

pathogens (Macho & Zipfel 2014). The PAMP-triggered immunity (PTI) is the frontline of the 

plant host’s immune system; if fungi seek to successfully colonize the host, they must avoid 

inducing PTI or suppress it. Effectors can suppress PTI, but they also can be captured by effector-

triggered immunity (ETI). Therefore, linking the disease symptoms and effectors or elucidating 

their relationships remains challenging. We postulate that this is the reason we didn’t notice a 

notably distinct abundance in the average number of effectors between plant pathogens (average 

number = 216) and endophytes (average number = 204) in our analysis. There is limited capacity 

for experimentally validating the function of effectors in pathogen-host interactions. As a result, 

only a small portion of effectors have been well studied in model fungi and economically important 

fungi (Stergiopoulos & Wit 2009). Many effectors have been identified in recently sequenced non-

model fungal genomes or genomes of economically unimportant species using bioinformatic 

approaches (Jones et al. 2018). PgtSR1, a novel fungal effector identified by Yin et al. (2019) from 

the wheat rust pathogen Puccinia graminis, decreases the abundance of small RNAs by suppressing 

RNA silencing in plant cells, and further obstructs small RNA-regulated host immune reactions. 

Czislowski et al. (2021) showed that endophytic Fusarium oxysporum strains display different SIX 

gene profiles (a family of effector genes secreted in xylem) with pathogenic strains. In this study, 

pathogenic strains, including plant pathogens and entomopathogens, did not exhibit a significantly 

larger effector repertoire than non-pathogenic endophytes. We speculate that both pathogenic and 

non-pathogenic isolates might possess a similar number of effectors, but these effectors likely differ 

in composition. Future extensive studies should concentrate on analyzing the composition to 

ascertain whether it could serve as a potential indicator for distinguishing between different 

lifestyles 

 

Basic genomic features are generally consistent with higher taxonomic ranks rather than 

lifestyles 

In the genomic era, the rapid development of sequencing technologies and the affordable cost 

of WGS have brought new insights to taxonomy. Genome Taxonomy Database (GTDB) 

exemplifies the vital important contribution of genomes in bacterial and archaeal taxonomy (Parks 

et al. 2018, Rinke et al. 2021). In fungal taxonomy, Gostinčar (2020) first tried to use the genomic 

distance to delineate fungal species, and obtained a relatively high degree of accuracy in delineating 

species according to the assumed threshold of genomic distances. However, the proposed criteria 

have not been widely utilized. Compared with the multi-locus phylogenetic taxonomy, huge 

computational resource requirements, higher sequencing cost, more complicated analytic methods 

and lower accuracy at higher taxonomic ranks render it useless. In this study, we initially planned 

to differentiate lifestyles based on the basic numerical features of genomes and exclude the 

influence of phylogenetic signals. However, we unexpectedly discovered that some basic numerical 

features, such as genome size, GC content, and gene number, easily accessed from public 

databases, display powerful resolution for differentiating genomes at higher levels, especially at the 

subclass. Inversely, most of these basic genomic features are useless only using the two features 

tRNA number and genome size without TEs displaying a certain degree of resolving power. To 

some extent, our discovery agrees with the conclusion of Li et al. (2021), in which fungal genome 

divergence is broadly consistent with the current taxonomic scheme at higher ranks, even using 

different genomic information. Fijarczyk et al. (2022) reported that pathogenic fungi include more 

protein-coding genes, tRNA genes, and larger genome sizes without repeats than non-pathogenic 
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fungi. Compared with insect-unrelated fungi, they also found that insect-related fungi have smaller 

genome sizes, gene numbers and exon numbers but increased exon length. In this study, we divided 

638 genomes into more specific lifestyles instead of only marking them as pathogenic or non-

pathogenic, and our results are partially consistent with the previous discoveries by Fijarczyk et al. 

(2022). More specifically, we observed that plant pathogens have the most significant average gene 

number of 11858, which is significantly larger than the average gene number of saprotrophs 

(average number = 10564) and entomopathogens (average number = 8847). However, 

entomopathogens have the smallest average gene number, which is significantly smaller than that 

of endophytes (average number = 11483). As for genome size and tRNA number, we observed a 

similar pattern when we compared both features across lifestyles. In aggregate, although several 

basic genomic features display a certain degree of discrimination for differentiating lifestyles, we 

prefer to conclude that differences across these basic genomic features reflect taxonomic ranks 

rather than lifestyles. 

 

Functional proteins are useful for differentiating lifestyles 

Compared with basic genomic features, numerous studies have demonstrated that functional 

proteins, responsible for degrading substrates, invading host cells, and obtaining nutrition are 

biologically more convincing in differentiating lifestyles (Feldman et al. 2017, Muszewska et al. 

2017b, Seong & Krasileva 2023). In the present study, we divided the functional proteins into 

multiple groups and discovered that these functional proteins generally display relatively high 

discrimination for differentiating taxonomic groups at different ranks and slightly reduced for 

distinguishing lifestyles.  

Secretome, a collective term representing all secreted proteins of an organism, is assumed to 

be related to fungal lifestyles. Krijger et al. (2014) reported that plant pathogens and saprotrophs 

include larger secretomes than animal pathogens, also indicated that differences in fungal 

secretome size reflects more on the phylogenetic relationships and less on lifestyle differences. 

Alfaro et al. (2014) believed that lifestyle is correlated to the composition of the secretome rather 

than its size. Recently, Chang et al. (2022) reported that the secretome size is mainly determined by 

phylogeny and lifestyle plays an important auxiliary role. Our results (Supplementary Table 5: 

sheet pairwise-lifestyle) reveal that plant pathogens have the largest secretomes (average number = 

847), whereas entomopathogens have the smallest secretomes (average number = 519). Based on 

the average number, we can differentiate (p < 0.05) plant pathogens from entomopathogens, 

mycoparasites (average number = 690), saprotrophs (average number = 663) and entomopathogens, 

as well as differentiate endophytes (average number = 823) from entomopathogens. With respect to 

the main protein groups, including CAZymes, lipases and SSPs, they display similar or higher 

discrimination than secretome, but lipases display lower discrimination.  

PCWDEs play key roles in obtaining nutrients and degrading the main structural components 

of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Lichenized fungi live as symbionts 

of green algae or cyanobacteria, obtaining diverse nutrients from their partners; therefore, they have 

fewer PCWDEs than non-lichenized fungi (Song et al. 2022). The reduction of PCWDEs is a 

prevailing trend in ectomycorrhizal Russulaceae (Looney et al. 2022), but they retain a certain 

degree of diversity in components (Kohler et al. 2015). The reduced abundance of PCWDEs in 

fungi might help in facilitating symbiosis by decreasing the expression of PCWDEs to reduce plant 

immune responses (Plett & Martin 2011). As for other kinds of lifestyles, the compositions of 

PCWDEs are different between saprophytic and plant-pathogenic fungi (Zhao et al. 2013, Kubicek 

et al. 2014). To the best of our knowledge, the present study is the first to conduct a 

comprehensively comparative analysis on the abundance of PCWDEs across multiple lifestyles. 

Plant-related fungi including endophytes (average number = 77), plant pathogens (average number 

= 81) and saprotrophs (average number = 62) have a significantly larger repository of PCWDEs 

compared with entomopathogens (average number = 13). For the plant-unrelated fungi, 

entomopathogens are the smallest repository of PCWDEs. However, interestingly, human 

pathogens are notable for relatively high abundance of PCWDEs (average number = 72). We 
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investigated the lifestyles of these human pathogens, which belong to Fusarium (Zhang et al. 

2020), Lomentospora (Ramirez-Garcia et al. 2018), Madurella (Ahmed et al. 2004), 

Phialemoniopsis (Alvarez Martinez et al. 2021), Scedosporium (Kaur et al. 2019) and Sporothrix 

(Rodrigues et al. 2016), also confirmed that these groups are indeed associated with human 

diseases. However, we did not receive any clues to help explain the high abundance of PCWDEs in 

human pathogens. Further in-depth studies should be conducted to trace the changes of PCWDEs in 

human pathogens. 

FCWDEs are critical for degrading the cell wall of fungal hosts during mycoparasitism. 

Mycoparasitic species tend to have an expanded repository of FCWDEs (Gruber & Seidl-Seiboth 

2012). Our results showed that mycoparasites have the largest repository of FCWDEs (average 

number = 42), which is significantly larger than entomopathogens (average number = 29), human 

pathogens (average number = 24), and plant pathogens (average number = 27). To date, there are 

few studies that investigate the relationship between FCWDEs and fungal lifestyles. Results in the 

present study represent an important addition to this field. 

 

The promising but limited potential of machine learning for lifestyle prediction 

Machine learning algorithms heavily rely on massive amounts of data, the accuracy of which 

dramatically depends on not only the correctness of the training data, and test data but also the 

quantity of input data (Raudys & Jain 1991, Sordo & Zeng 2005, Read et al. 2011). In classification 

tasks, inaccurately labeled datasets and inadequate sampling can lead to incorrect predictions. In the 

present study, two main challenges were encountered: inadequate sampling for several lifestyles 

and inaccurate lifestyle labels for some genomes. The unbalanced distribution of lifestyles among 

genomes in public databases is a common and unavoidable issue. This distribution largely depends 

on economic and medical importance, as well as the availability of samples. In our dataset, we have 

included adequate genomes of plant pathogen (n = 372), but fewer genomes of mycoparasites (n = 

21), human pathogens (n = 16), and nematophagous fungi (n = 4). We excluded nematophagous 

fungi during the analysis, but the relatively small sample sizes for multiple lifestyles had some 

impact on the predictive accuracies, as shown in Fig. 7. Another challenge is assigning lifestyle 

labels to each genome. When determining the lifestyle of each genome, we can only rely on 

published literature or descriptions provided by the submitter. Most studies characterized fungi 

isolated from diseased plants as plant pathogens, which does not follow Koch’s postulates (van 

Wyk et al. 2012, Oberti et al. 2020, Telenko et al. 2020), therefore some strains recorded as plant 

pathogens may not be real pathogens. We also encountered problematic descriptions of fungal 

lifestyle in previous publications. For example, Calcarisporium arbuscula NRRL 3705, isolated 

from the fruiting bodies of Russulaceae (Cheng et al. 2020), was supposed to be a mycoparasite but 

was characterized as an endophyte. As these authors had apparently not been aware of the fact that 

the fungi have been classified in their own kingdom quite some time. Despite these issues, our 

predictive models still displayed a relatively high degree of accuracy in differentiating plant 

pathogens from other lifestyles, and adequate sampling reduced the error caused by inaccurate 

labeling. In predicting the lifestyle of unlabeled genomes, we further compared the predicted 

lifestyles and observed lifestyles in phylogenetically closed groups, and most of our predicted 

lifestyles are consistent with the observed lifestyles. Taken together, we suggest that using machine 

learning algorithms to predict fungal lifestyles is promising and can be improved with more 

sequenced genomes in the future. 

 

Predicting potentially adverse fungal lifestyle 

Fungi provide food and essential medical and industrial secondary metabolites, as well as 

promote the global carbon cycle (Hyde et al. 2019, Lücking et al. 2021, Maharachchikumbura et al. 

2021b). However, the past two decades have witnessed the occurrence of new and emerging 

disease-causing fungi that infect plants, animals, and humans (Fisher et al. 2012). Human activities 

have vastly expanded fungal distribution and brought pathogenic fungal species accidentally to new 

ecosystems (Santini et al. 2013). Pseudogymnoascus destructans, an emerging fungal pathogen 
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causing white-nose syndrome in bats, was initially detected in a commercial tourist cave, and it was 

speculated that the species was brought to external environments by tourist movements and further 

spread across North America, resulting in widespread mortality of hibernating bats (Blehert et al. 

2009, Frick et al. 2015, Langwig et al. 2016). During the long-term interaction between fungal 

pathogens and hosts, the fungi and the host have developed mechanisms to counteract each other's 

actions. Therefore, the hosts do not develop disease symptoms even if the fungi express abundant 

virulent factors. However, the fungi are introduced to new habitats and colonize new hosts, and 

disease-causing interactions develop (Parker & Gilbert 2004). Phytophthora ramorum, an invasive 

plant pathogen in California and Oregon, is responsible for the destructive disease called sudden 

oak death, resulting in significant tree mortality, and posing a severe threat to the local forest 

ecosystem. (Rizzo & Garbelotto 2003). In addition, some fungal species or strains have multiple 

lifestyles, including non-pathogenic and pathogenic. Cannon et al. (2012) and Liu et al. (2022) 

demonstrated that endophytic fungi can switch to a pathogenic lifestyle and cause disease 

symptoms. Due to the lack of effective analytical methods, some potential fungal pathogens were 

neglected until they caused devastating impacts on human health, food security and ecosystem 

stability (Anderson et al. 2004, Fisher et al. 2012, McDonald & Stukenbrock 2016). In scientific 

investigations and daily practices, we only observe one specific lifestyle of a certain fungal isolate 

under the current condition. Therefore, experimentally exploring the potential lifestyles is 

impractical. In the study, our machine learning model determines the fungal lifestyles according to 

the corresponding probabilities, the highest probability represents the final predictive results, and 

the secondary high but non-zero probabilities imply that the strain might have another kind of 

lifestyle. For instance, Arthrinium puccinioides CBS 549.89 was predicted as a plant pathogen with 

a probability of 0.4918, but it may also be an endophyte or saprotroph with a probability of 0.1967 

and 0.1475 respectively. Through a literature survey, we observe endophytic and saprotrophic 

lifestyles in other species within the genus Arthrinium (Wang et al. 2018). With more fungal 

genomes sequenced and added to the dataset, the accuracy of our predictive model for determining 

fungal lifestyles using machine learning algorithms will become more reliable. The relatively high 

probability of harmful lifestyles can be used as an early warning of some devastating fungi. By 

identifying these harmful fungi early on, appropriate measures can be taken to prevent their spread 

and minimize their impact. 
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Supplementary materials 

All genome assemblies can be downloaded from NCBI using the corresponding assembly 

accessions or from JGI using the corresponding links in Supplementary Table 1. The following 

supplementary figures and tables can be accessed at the Figshare repository: 

https://doi.org/10.6084/m9.figshare.23657841 

 

Supplementary Figure 1 – Distribution and proportion (%) of TE families in 638 genome 

assemblies. The bubble size represents the proportion of the TE in the genome. The bar represents 

the proportion of total TE size to the genome size. 

 

Supplementary Figure 1 

 

Supplementary Figure 2 – Composition and abundance of functional protein groups in 638 

genome assemblies. The bubble size represents the number of the protein group. The bar represents 

the proportion of the secretome size to the total number of proteins per genome. 

 

Supplementary Figure 2 

 

Supplementary Table 1 A summary table containing genome information of 638 genome 

assemblies, lineage information, and statistics of TE categories, basic genomic features and 

functional protein groups. 

 

Supplementary Table 1 

 

Supplementary Table 2 Taxonomic and lifestyle coverage of 638 Sordariomycete genomes. 

 

Supplementary Table 2 

 

Supplementary Table 3 General statistics of sequencing technologies, assembly completeness and 

TE sizes of 638 Sordariomycete genomes. 

 

Supplementary Table 3 

 

Supplementary Table 4 Pearson Correlations of 25 basic genomic features. 

 

Supplementary Table 4 

 

 

 

https://drive.google.com/file/d/1svpBzkOl-gTQatnFe-eobTxCIA1pmPa8/view?usp=sharing
https://drive.google.com/file/d/145jJ6u8lsLTDcJLLeOMqz3pqAp5n9mJC/view?usp=sharing
https://docs.google.com/spreadsheets/d/1Hp00ZHiiqhoY0WlI9Zc3ZyG9ivEkziXH/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1eTier6CPewsmHqMvsCBBE2AlebS3ZSxO/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1OcZXhO0GBOFCzZ8bm_jicyIRwteBZrJl/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/10oCCrT31IAsuO0lTNu1rRGg53ONJZQrG/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
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Supplementary Table 5 Comparative analysis results of 25 basic genomic features. 

 

Supplementary Table 5 

 

Supplementary Table 6 Pearson Correlations of 24 functional protein features. 

 

Supplementary Table 6 

 

Supplementary Table 7 Comparative analysis results of 24 functional protein features. 

 

Supplementary Table 7 

 

Supplementary Table 8 Predictive accuracies of six machine learning algorithms. 

 

Supplementary Table 8 

 

Supplementary Table 9 Predicted results of 85 undetermined genomes and the observed lifestyles 

of phylogenetically close groups. 

 

Supplementary Table 9 

 

Code availability 

All the scripts used for statistics, visualization and machine learning are written in R or 

Python. Scripts are available at GitHub (https://github.com/ypchan/Predict-fungal-lifestyles). 

 

https://docs.google.com/spreadsheets/d/1O2X-vRiH0IbjnTZROdH9a7WxtilowU3T/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/16ZXzUTJz0oNi5IqiPI6kgpY9Kq8ul8c_/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1XcwaJgHb45-Ut60jdQHZ0SwASdAdmFCH/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1g1egHWnjdbRhXMbEfuDDIcYITmv_ZS-o/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1jhgd-NGyXRWoZ08XYa6qC7s2JpxRjoPb/edit?usp=sharing&ouid=105135095298755014372&rtpof=true&sd=true

