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Abstract

Economically and agriculturallymportant fungal species exhibit various lifestyles, and they
can switch their life modes depending on the habitat, host tolerance, and resource availability.
Traditionally, fungal lifestyles have been determined based on observation at a particutar host
habitat. Therefore, potential fungal pathogens have been neglected until they cause devastating
impacts on human health, food security, and ecosystem stability. This study focused on the class
Sordariomycetes to explore the genomic traits that coulcsee to determine the lifestyles of fungi
and the possibility of predicting fungal lifestyles using machine learning algorithms. A total of 638
representative genomes encompassing 5 subclasses, 17 orders, and 50 families were selected an
annotated. Throudgan extensive literature survey, the lifestyles of 553 genomes were determined,
including plant pathogens, saprotrophs, entomopathogens, mycoparasites, endophytes, human
pathogens and nematophagous fungi. We first tried to examine the relationship betngzdn
lifestyles and transposable elements. We unexpectedly discovered that -gegeration
sequencing technologies tend to result in reduced size of transposable elements while having no
discernible impact on the content of proteoding genes. Thenye constructed three numerical
matrices: 1) a basic genomic feature matrix including 25 features; 2) a functional protein matrix
including 24 features; 3) and a combined matrix. Meanwhile, we reconstructed a garadene
phylogeny, across which comprehmes comparative analyses were conducted. The results
indicated that basic genomic features reflected more on phylogeny rather than lifestyle, but the
abundance of functional proteins exhibited relatively high discrimination not only in differentiating
taxanomic groups at the higher levels but also in differentiating lifestyles. Among these lifestyles
including plant pathogens, saprotrophs, entomopathogens, mycoparasites, endophytes, and human
pathogens, plant pathogens exhibited the largest secretomes, emtdmopathogens had the
smallest secretomes. The abundance of secreteenesdas a valuable indicator for differentiating
plant pathogens from mycoparasites, saprotrophs, and entomopathogens, as well as for
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discriminating endophytes from entomopathayeBffectors have long been considered disease
determinants, and indeed, we observed a higher presence of effectors in plant pathogens than in
saprotrophs and entomopathogens. However, surprisingly, endophytes also exhibited a similar
abundance of effectsy challenging their role as a reliable indicator for pathogenic fungi. A single
functional protein group could not differentiate all lifestyles, but their combinations resulted in
accurate differentiation for most lifestyles. Furthermore, models of sthima learning algorithms

were trained, optimized, and evaluated based on the labeled genomes. jgefbasance model

was used to predict the lifestyle of 83 unlabeled genomes. Although insufficient genome sampling
for several lifestyles and inaccurdifestyle assignments for some genomes, the predictive model
still obtained a high degree of accuracy in differentiating plant pathogens. The predictive model can
be further optimized with more sequenced genomes in the future and provide a more reliable
prediction. It can serve as an early warning system, enabling the identification of potentially
devastating fungi and facilitating the implementation of appropriate measures to prevent their
spread.

Keywords i CAZymesi FCWDEsi Genomics genomic profilee PCWDEsi secretomé TEs

Introduction
Sordariomycetes, established by Eriksson & Wi(ik@07) is the secondargest class of the
phylum AscomycotgHyde et al. 2020)Based on the latest outline\Mijayawardene et al. (2022)
it comprises 7 subclasse46 orders, and 172 families. The perithecial ascomata and inoperculate,
unitunicate asci are the main diagnostic morphological characteristics for distinguishing
Sordariomycetes from other class@daharachchikumbura et al. 201%hen et al. 2023
Sorcariomycete species exhibit a cosmopolitan distribution and inhabit diverse ecos{tengs
et al. 2018, Luo et al. 2019, Kwon et al. 2021, Maharachchikumbura et al. 28&hajgh most
Sordariomyetes are saprobic on organic matter from various plaatslass also includes several
notorious plant pathogens. For instanCe]letotrichumspecies (Glomerellacea&lomerellales),
Fusarium graminearum,F. oxysporum (Nectriaceae, Hypocreales), arflyricularia oryzae
(Pyriculariaceae, Magnaporthales), areelisin the top 10 fungal plant pathogegidean et al.
2012) Moreover, several species, such Rgricularia grisea and Ophiostomaspp., were
recognized as invasive plant pathogens altering the local natural ecosiAtetasson et al. 2004,
Solla et al. 205). Some species are related to human and animal dig&asess et al. 2011, Troy
et al. 2013, Tortorano et al . ,whikebtherspécieshatelotk a e
great importance to medicine, agriculture, and induf@rawford ¢ al. 1952, Kaewchai et al.
2009, Xu et al. 2014 Diverse lifestyles, including saprotrophic, necrotrophic, hemibiotrophic, and
biotrophic, are present in Sordariomycetes, all of which represent distinct survival strategies
evolved by fungi during their nteractions with their hosts, companions, and associated
environmentgPresti et al. 2015, Boddy 2016, Rai & Agarkar 20I#)e to variations in hosts and
substrates, certain fungi can transition between different lifestyles. Transitions from the emdophyti
lifestyle to the pathogenic lifestyle and vice versa have been observed in some important fungal
plant pathogen§ O6 Connel | et al. 2012, Rai & Agarkar :
Lifestyle-associated genomic traits are an interesting area of research, hagepat
transitions are highly relevant to gene gain and [¢sgesen et al. 2006, Spanu et al. 2010)
Pyrenophora triticirepentis (Pleosporaceae, Pleosporales, Dothideomycetes) becomes highly
pathogenic on wheaf (iticum aestivurj by obtaining the preinaceous hostpecific toxinToxA
from Stagonospora nodoruifPhaeosphaeriaceae, Pleosporales, Dothideomycetes), demonstrating
that the transfer of the virulence gene is an essential source for the emergence of new pathogens
(Friesen et al. 2006)CgNPGL1lis an effector responsible for mycelial growth, conidiation, the
development of invasive structures, and the pathogenicifoifetotrichum gloeosporioideslb
(from Hevea brasiliensjs which is thought to be acquired by horizontal transfer (Liang et al.
2021). An exclusively biotrophic lifestyle is related to gene losses of primary and secondary
metabolic enzyme¢Spanu et al. 2010)The convergent losses of degajated genes and the
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expansion of symbiosielated genes are the genetic bases for thaigmolof mycorrhizal habits
(Kohler etal. 2015) Tr ansposable el ements (TEs), al so
genetic components in both eukaryotic and prokaryotic genomes. They play a significant role in
shaping the evolution of fungal gemes by modifying genome plasticity and architecture,
disrupting functional genes, creating novel genes, or facilitating horizontal gene t(ansfain et

al. 2021) TEs are critical contributors to fungal pathogenicity by facilitating the diversdicati
effector genes and even generating novel effector gérasché et al. 2019)n addition, plant
symbionts tend to have more TEs than animal parg8teszewska et al. 2017a)

To survive within a host or a specific environment, fungi need to posisessecessary
functional proteins to absorb nutrients and overcome physical and chemical barriers presented by
hosts (de Jonge et al. 2011, McCotter et al. 2016, Zeng et al. 2@Eyetome refers to the
complete secretory proteins of an organism, whighreleased outside the cells to decay substrates
and interact with microbes, plants, animals, insects, and other (fldagiwood et al. 2011, Frey
Klett et al. 2011, Shang et al. 2015he fungal secretome comprises various functional groups of
protein, including carbohydratactive enzymes (CAZymes), proteases, lipases, sweatkted
proteins (SSPs), and other secretory proteins of unknown fund#dfaso et al. 2014) Many
comparative genomic studies have focused on fungal CAZymes, searchingsibfgposnnections
between compositions of CAZymes and fungal lifestf#asbicek et al. 2014, Pellegrin et al. 2015,

Kim et al. 2016, Knapp et al. 2018, Chang et al. 20€2Zymes encompass numerous plant cell
wall-degrading enzymes (PCWDESs), and theimposition and abundance are often associated
with a saprotrophic lifestyle. However, this perspective has been challenged by the fact that the
highest number of CAZymes has been observed in plant pathogenic(@iap et al. 2013,
Kubicek et al. 2014)Fungal effectors, also called virulence factors encoded by avirulence genes,
are potent weaportbatfungal pathogens ugse combat the immune systemspdfnts and animad
(Stergiopoulos & Wit 2009, Kale & Tyler 2011Most effectors play crucial roles iro$tfungal
interactions by suppressing host defenses to promote host colonigatio Edwards 2016,
Dasari et al. 2018, Wang et al. 2028pme effectors are essential genetic factors in determining
host specificity, which help identify potential pathogefungi to certain plantéLi et al. 2020)
Effector repositories have been considered potential markers for differentiating pathogenic and
endophytic strains in thHeusarium oxysporurapecies complef¢Czislowski et al. 2021)

Machine learning is a brahcof artificial intelligence commonly subclassified into
unsupervised and supervised meth@dso 2015) The former has been used to find naturally
occurring connections or groupings within observations based on little knowledge avidveo
backgroundnformationavailableregarding the outcome of the resyl@&amacho et al. 20187 his
is contrasted with the supervised method, whglthe construction and optimization of model
based and weltonstructed training data with observations and correspgmdsults(Bzdok et al.

2018) The model is then utilized to predict the lifestyles of future instances. Both methods have
been widely used for unearthing hidden information in extensive and complex biologic@\idata

et al. 2014, Xu & Jackson 2019)hee are many applications of machine learning in species
delimitation, such as successfully using unsupervised machine learning methods to assign arachnid
taxa into speciefDerkarabetian et al. 2019 eveloping a machine learning species identifier for

the genusHebeloma(Bartlett et al. 2022)and predicting fungal lifestyles of Dothideomycetes
(Haridas et al. 2020)Moreover, machine learning has been used to characterize and classify
images of clinically and agriculturally important fungi, which avoidgepbally subjective
differences, reduces identification time, and lowers cOatmgcham et al. 202Z i el i Es Kk | e
2020)

To mine the association patterns between genomic traits and lifestyles, as well as the
interrelation between genomic traits and phylogeny, and to ascertain the feasibility of predicting
lifestyles through machine learning approacives carried out a systematic bioinformatic analysis
utilizing 638 Sordariomycete genomes. Firstly, we determined whether the sequencing technologies
significantly influence genome assemblies and TE abundance, which exists theoretically and
practically but has never been discussed in previous studies. Secondly, based on the study of
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Fijarczyk et al. (2022)we compared the basic genomic traits across multiple lifestyles and the
functional protein groups. Furthermore, we considered the influence of phylagencompared

the difference of numerical genomic traits at different taxonomic levels for determining lifestyle
and phylogeny, which is the most critical determinant in shaping genomic traits. It is also an answer
to resolve the longtanding controversywhether differences in the secreted proteins reflect
phylogeny or pathogenicit{Pellegrin et al. 2015)Finally, we explored whether it is possible to
predict fungal lifestyles using machine learning algorithms.

Materials & Methods

Genome collection

The taxonomic scheme of Sordariomycetes has been wupdated continuously
(Maharachchikumbura et al. 2015, Hyde et al. 2020, Wijayawardene et al., 2d##teas the
NCBI taxonomy database does not keep up with the updates, and some genomes were assigned
incorrect lineage informatioiShen et al. 2020, Liu et al. 2022)o ensure the correctness of the
taxonomic positions of selected genomes, a taxonomic framework table composed of all generic
names in Sordariomycetes and the parent lineage information wasegregaording to thstudy
of Wijayawardene et al(2022), and some changes were added in keepmgith the latest
literature (Crous et al. 2021, Sun et al. 2021, Magyar et al. 2022, Sugita & Tanaka/Z62%ed
t he term AAscomycot ao lars NORI 0sseaGermo me e
https:/www.ncbi.nim.nih.gov/dataub/genome/?taxon=48902 August 2022) to obtain all records
of Ascomycota genomes, and then a table, including asserot¥gsaon, organism name, strain
identifiers, assemble level, and release date, was downloaded. Only records of the Sordariomycete
genome were retained according to the generic names, and the lineage information of the genus
werealso integrated into thalble. These genomes were downloaded via NCBI command line tool
datasets. Besides, we collected several genomes from JGI MycdGogoriev et al. 2013)vith
written permission. More details, such as lifestyles, sources, and publication records, were
detemined by tracing the original literature, the sample details, and the description of the
corresponding BioProject records. We assigned the strains isolated from diseased plant tissues as
plant pathogens, from decaying woods as saprobes, from insecteraspgihogens, from fungi as
mycoparasite, from plant tissues without disease symptoms as endophytes and from diseased
human tissues as human pathogens. Moreover, four carnivorous fungi that feed on nematodes were
marked as nematophagous fungi, and othaepges that lacked descriptive information regarding
i festyl e wer e ma Mkoevel-stadsed Strains,didaldinia eschsahdtioUM
1020 and Daldinia eschscholtziiUM 1400, have two lifestyles including endophytic and
saprotrophic lifestigs. Given that modDaldinia species were characterized as saprotrophic, we
selected saprotrophic as the lifestyle labels in the training édientophomopsis lycopodina
ATCC 66958 (Leotiomycetes) was selected as the outgroup.

Assessment of genome cortgieness

Genome quality assessment is the primary step in genomic studies, which is vital for
recognizing potential issues in subsequent ana{§srats 2019) Benchmarking Universal Single
Copy Orthologs (BUSCO) is an ideal dataset for quantifying germon®letenes$Simao et al.
2015)and conducting genonrszale phylogenetic inferen¢8hen et al. 2018, 2020, Manni et al.
2021) Here, we used BUSCO version 5.ZManni et al. 2021)with the ascomycota _odb10
database comprising 1,706 reference genessiesaghe completeness of the genome assemblies.
Only genomes with BUSCO gene content larger than 80% were retained for subsequent analyses.

Phylogenetic inference

The corresponding protein sequences of siagjgy orthologs resulting from the BUSCO
analyss were extracted and assembled into a siluyles dataset for phylogenetic analysis. Each
locus dataset was aligned using MAFFT version 7&&oh et al. 2002vi t h o-patto-ons i
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maxi terate 10000 all owing t he approgilgatearafinerhemt a ut
strategy and conduct iterative refinement at most 1,000 times. Poorly aligned regions were removed
using trimAl version 1.4 (Capel@ut i ®r r ez et al . -d®EPy ouwtiot,h atn
alignments with a length shorter thanOl@ere deleted. ModelFindg¢Kalyaanamoorthy et al.

2017) implemented in IQTREEZ2 (Minh et al. 2020)was used to choose the béstevolution

model of each alignment based on the Bayesian Information Criterion (BIC). All -toogke
alignments were cont@nated into a supermatrix using anhimuse python script. A single
evolution model was determined by the occurrence and used in concatérasohphylogenetic
analyses. MaximuHdikelihood analysis was conducted using-TREE2 with 1000 bootstrap
replicates of the SHike approximate likelihood ratio test (S®.RT) (Guindon et al. 2010and

1000 bootstrap replicates of ultrafast bootstrap approximation (UFBdoBng et al. 2017)o

estimate the reliability of each internal branch. The stédiantophanopsis lycopodinédATCC

66958 served as an outgroup to root the phylogeny.

Identification and analysis of repetitive elements

A de novolibrary of repeat consensus sequences was generated for each genome using
RepeatModeler version 2.0.2 with search engh@€BI-RMBLAST version 2.11.0+. Next,
repetitive sequences in genomes were identified andreadked using RepeatMasker version 4.1.2
based on three repeat libraries, includingdbeenovolibrary, Dfam 2.0(Hubley et al. 2015)and
the Repbasderived lilrary (20181026)Bao et al. 2015)The abundance of transposable element
(TE) categories was summarized using ahanse Python script and further visualized using the
package ggplot2 in R.

Recognition of the influence of sequencing strategies

The selead genomes were mainly generated from secand thirdgeneration sequencing
technologies. Given their differences in sequencing read length, we had to consider the impact of
sequencing technology on the genome, especially in the genome completeneds sizésT
Therefore, we first excluded only one genome generated from theydmstation sequencing
technology (Sanger sequencing) and divided the other genomes into two groups according to their
sequencing strategies. If the genome was generated udinghersecondyeneration sequencing
technologies or with Sanger sequencing for improvement, we marked the sequencing strategy of
the genome as secogéneration sequencing. If the genome was generated using only the third
generation sequencing technologi€Singlemolecule reatime sequencing or Nanopore
sequencing) or with secosgkneratiorsequencing for improvement, we marked the sequencing
strategy of the genome as thgdneration sequencing. Comparative analyses of the completeness,
continuity, and E sizes of genomes generated from both different sequencing strategies were
conducted to figure out whether sequencing strategies impact the number of genes and the
abundance of TEs. We also considered the taxonomic position of the compared groupsase decre
the influence of phylogeny on the comparative results.

Gene prediction and functional annotation

Transfer RNA (tRNA) genes in each safasked genome were annotated using tRNAscan
SE version 2.0.9 with default parameté@han et al. 2021)Models ofproteincoding genes were
predicted using the BRAKER2 pipeliieBr T n a e twhiehlcombi@e® lukt features of
GeneMarkeEP+ ( Br Tna e tandaAUGUSPUB(SAnke et al. 2008)To improve gene
prediction accuracy, fungal proteins with annotation scores above 3 in UniP(Gtisortium
2020) were downloaded ahreduced by removing redundant protein sequences usingIITD
version 4.8.1(Fu et al. 2012)Sequence identity and alignment coverage were set to 0.8 to retain
the representative sequences. Finally, a total of 95,251 protein sequences were usedahs extern
evidence for gene structure prediction. Protein hints of homologous regions in each genome were
produced using ProtHint version 2.6(0Br T n a e tandadrther uged InOthe BRAKER2
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pipeline. Functional annotation, orthology assignments, and domain prediction of all predicted
proteins were conducted using eggN@@pper version 2.1 &antalapiedra et al. 2021)

Identification of seaeted proteins and effectors

Using the previously described widely used pipeline (Pellegrin et al. 2015, Miyauchi et al.
2020, Mesny et al. 2021), secretory proteins were identified. In brief, proteins with signal peptides
were identified as candidaseceted proteins using SignalP version 4.1 with default parameters
(Petersen et al. 2011). Then, membrane proteins were removed using TMHMM version 2.0 (Melén
et al. 2003) by detecting the presence of the transmembrane helix. Glycosylphosphatidylinositol
(GPI-anchored proteins were removed using NetGPI version 1.1 (Gislason et al. 2021) online by
detecting GRhnchoring signals, and proteins residing in the endoplasmic reticulum lumen were
removed using RSCAN (Nielsen et al. 1997) by detecting KDEL motify§Asp-Glu-Leu) in the
C-terminal region. Two subcellular localization prediction tools, WoLF PSORT (Horton et al.
2007) and TargetP version 2.0 (Emanuelsson et al. 2007) were used to confirm that only proteins
assigned extracellular tags were identifisdsacreted proteins.

Secreted CAZymes including auxiliary redox (AA) enzyme families were identified using
run_dbCAN version 3.0.7 (Zhang et al. 2018). Proteases and lipases were identified by querying
the MEROPS database (Rawlings et al. 2017) and LE&bdae release 3.0 (http://www.led-uni
stuttgart.de), respectively, using BLASTp with a-offte-value of 1e5. Other secreted proteins
shorter than 300 amino acids were identified as SSPs and the remaining secreted proteins were
marked as OTHER. Secretetfectors were identified using EffectorP version 3.0 (Sperschneider
& Dodds 2022) with the option of fungal mode. There was no intersection between each group.
Furthermore, we followed the grouping criteria in the study of Mesny et al. (2021) and ethssifi
secreted CAZymes into the plant cell wadigrading enzymes (PCWDESs), fungal cell wall
degrading enzymes (FCWDESs), Cellulose, Hemicellulose, Lignin, Pectin, Peptidoglycan, Mannan,
Glucan and Sucrose.

Analyses of numerical traits

To explore which of thébasic components of the genomes and the functional proteins
determine the lifestyle, we classified the numerical traits of genome assemblies into two categories
and constructed two numerical matrices: basic genomic features and functional protein.features
The matrix of basic genomic featurescludes 25 numerical features: genome size with TEs,
genome size without TEs, TE size, GC content of genomes, GC content of genome without TE, GC
content of TE, the numb&pf genes, tRNAs, exorandintrons respedvely; the average lengsh
of genes, tRNAs, exons, intrgrend intergenic regionsthe minimum length of genes, tRNAs,
exons, intronsandintergenic regionsthe maximum lenghof genes tRNAs, exons, intrgrsnd
intergenic regionsThe matrix of fundbnal protein featuremcludes 24 numerical features: total
secreted proteins, the effectors, proteases, lipases, SSPs, CAZymes, GHs, GTs, PLs, CEs, AAs,
CBMs, PCWDEs, FCWDEs, cellulosenemicellulosg lignin-, pectin, peptidoglycan mannan
glucan, chitin-, sucrosedegrading enzymes and other functional proteins. The numbers of these
features were summarized usinghinuse Python scripts.

Correlations were calculated for the two main categories, and details were characterized in
the captions of theorresponding figures. To make the comparative analysis more reliable, we
excludedthosegroups with fewer than 10 genomes. Overall comparisons were conducted to detect
changes in these numerical traits across taxonomic ranks and lifestyles. Post hise paiftiple
comparisons were performed to discover how many pairwise comparisons were significantly
different based on different grouping criteria and to explore which features were helpful in
differentiating taxonomic groups and lifestyles.

Predicting lifestyles using machine learning algorithms

Six commonly used machine learning algorithms for nuléiss classification implemented
in the Python library scikitearn (https://scikHearn.org): Random Forests (RF), Decision Tree
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(DT), Naive Bayes (BayesBSupport Vector Machine (SVM), Logistic Regression (LR) anrd K
Nearest Neighbors (KNN). These algorithms were used to predict fungal lifestyles, and the
predictive accuracies of these algorithms were compared to determine the best classifier. Three
matrices, including the basic genomic features (25 numerical traits), functional protein groups (24
numerical traits), and combined dataset of them (49 numerical traits) were used during the training
and prediction stages for selecting the most suitable dafHsetgenomes with undetermined
lifestyles were excluded from the datasets. First, we standardized the values of features using the
function StandardScaler. Next, features with low variances were detected and removed using the
function VarianceThreshold witdefault parameters. Then, the dataset was split into the train
(70%) and test subsets (30%) using the function train_test_split, and the parameters of the best
suitable estimator were determined using the function GridSearchCV. The performance of the
estimator was evaluated using the function cross_val_score with 5 replicates based on the test
subset. Finally, we used the best estimator to predict the lifestyles of unlabeled genomes.

Results

Genome information

A total of 638 representative genomes froraubclasses, 17 orders, 50 families, 147 genera
and 614 species, were selected in this study. More detailed information is described in Supporting
Information Supplementary Table 1. The subclass Hypocreomycetidae accounted for 73.20% (n =
467) of the genoms (Supplementary Table 2: sheet subetagst), and ten orders were best
represented, such as Hypocreales, Glomerellales and Microascales, the number of which range
from 3 to 363 (Supplementary Table 2: sheet codemt). The other orders contain onlgeo
genome except for three genomes that have not yet been classified in any of the established orders
with certainty. Through a comprehensive survey of scientific literature and related databases, we
indirectly obtained lifestyle descriptions of most siga(86.68%, n = 553) and further classified
these strains into eight groups by their host and tropic mode (Supplementary Table 2: sheet
lifestyle-count). The most common lifestyle is plant pathogens, which occupy 58.31% (n = 372) of
the total genomes, fallved by saprotrophs at 12.23% (n = 78), entomopathogens at 6.74% (n =
43), mycoparasites at 3.29% (n = 21), endophytes at 2.98% (n = 19), human pathogens at 2.51% (n
= 16) and nematophagous fungi at 0.63% (n = 4). The remaining 85 genomes (13.32%) were
temporarily marked as fAUndeterminedo. We al so
genomes (Fig. 1, Supplementary Table 2: sheetaggsat), and summarized that 74.92% (n = 478)
of them were sequenced using secgederation sequencing technologies9246 (n = 159) were
sequenced using thigkeneration sequencing technologies and only one genome was sequenced
using Sanger sequencing technology.

Lifestyle occurrences in Sordariomycetes groups

Based on the genome data in this study, seven lifesijleglant pathogens, saprotrophs,
entomopathogens, mycoparasites, endophytes, human pathogens and nematophagous fungi were
determined across 553 Sordariomycete genomes, but with different occurrences at the subclass,
order and family levels (Fig. 1, Supplentary Table 2: sheet subcldgestyle). In the more fully
sampled groups, we observed more diverse lifestyles. For instance, theampstd subclasses
Hypocreomycetidae and the subordinate order Hypocreales comprise all seven lifestyles, whereas
the subclass Sordariomycetidae and Xylariomycetidae only comprise four and three kinds of
lifestyles, respectively. At the order level (Supplementary Table 2: sheetlibediile), the order
Ophiostomatales comprises five kinds of lifestyles only inferidghéoHypocreales, which includes
seven lifestyles. We compared lifestyles in these two orders at the family level. Ophiostomataceae
and Nectriaceae wer@redominantfor plant pathogens; Hypocreaceae wasticeable for
saprotrophs; Ophiocordycipitaceae anthuitipitaceae wereonspicuousfor entomopathogens.
We also compared the distribution of lifestyles at different taxonomic levels (Supplementary Table
2: sheets lifestylsubclass, lifestyl®rder and lifestyldamily). Endophytes, saprotrophs, and plant
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pathogens are present in four subclasses, followed by human pathogens, present in three subclasses
and entomopathogens and mycoparasites, present in two subclasses. Four genomes with the
lifestyle of nematophagous fungi are only present in Hypocreomypeetisk the order and family

level, plant pathogen is the most common lifestyle in 11 orders and 29 families, followed by

saprotrophs in 9 orders and 19 families, endophytes and in 5 orders and 10 families, and human
pathogens in 5 orders and 5 families.
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Figure 17 Maximum likelihood (ML) phylogeny of 638 taxa in the class Sordariomycdies.

concatenatiobhased ML phyl ogeny (I nL = 1134,234,602

amino acid dataset of 1,124 BUSCO genes (total of 884,972 sites) under the LG + G4 evolution
model. The sequencing strategies are shown in different shapes (wiigplemsequencing
strategies were conducted for generating the genomes, we just marked the sequencing strategy by
the most advanced technology). Lifestyles are indicated using different fill colors. Guanine
cytosine (GC) content of the genome and genonitbowt transposable elements (TEs) are
indicated by a line chart. Genome size and TE sizes are indicated using stacked bar charts. This
figure was plotted using the packages ggtree version BYdidet al. 2017)and ggtreeeExtra
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version 1.6.1(Xu et al. 2@1) in R (R Core Team 2022)with the dataset provided in
Supplementary Table 1.

Influence of sequencing technologies on TE size

The genomes were generated from {fgsheration, secongeneration, and thirgeneration
sequencing platforms, which accodot 0.16% (n = 1), 74.92% (n = 478), and 24.92% (n = 159)
of the total number of genomes. To recognize the potential influences of sequencing technologies
on subsequent numerical analysis, we compared the completeness, continuity, and TE sizes of
genomes g@nerated from seconand thirdgeneration sequencing technologies (Supplementary
Table 3). There is no significant differenge=0.08) in BUSCO completeness (Fig. 2a). However,
we observed significant differences in the number of contig/scaffold (Bigr € 2.2e16) and the
N50 value (Fig. 2cp < 2.2e16), which suggests that the genomes generated fromgéineration
technologies are better in genomic continuity than that generated from spmwEMGtion
sequencing technologies. We also investigatbdther the sequencing technologies influence the
TE size and found that the genomes generated fromdhindration sequencing technologies have
a larger size of TEs than secegeéneration sequencing technologies (Fig. 2d). We compared TE
size between thtwo wellsampled families, and significant differences were also observed in the
genomes of Glomerellaceae (Fig. Be; 0.0019) and Nectriaceae (Fig. gfF 6.1e06). Due to the
nortnegligible impact of sequencing technology on TE size, we did nobmxgurther the
relationships between lifestyles and the abundance of TEs. The abundance of TEs is provided in
Supplementary Table 1 and visualized in Supplementary Fig. 1.
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Figure 27 Comparative analyses of genome completeness, continuities, andeSEboEgenomes
generated by secon®nd) and thirdgeneration (3rd) sequencing strategaefar plot of BUSCO
completeness to represent the genome completeness. b, ¢ Baroplatke number of
contigs/scaffolds and the value of N50 to represent therotitis. N50 is the shortest contig
length that needs to be included for covering 50% of the genome, which is a measure to indicate the
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qguality of assembled genomes that are fragmented in contigs of different lengths. The larger
number of contigs/scaffoldaeans a more fragmented genome. The larger N50 value means a more
contiguous genomeli f Bar plots of TE size at the class and family levels to present the influence

of sequencing technologies on TE size. Shapiiilk test was conducted (the function stat
shapiro.test) to check whether the compared datasets follow a normal distribution, and the results
suggested that these datasets are not normally distributed. Thus, Wilcoxon Rank Sum and Signed
Rank Tests were conducted (the function ggpubr::stat cempeans) to test whether the
compared datasets are significantly different
ggpubr. For visualization, few data points above 2,000 in subfigure b, data points above 8 Mb in
subfigure c, and data posmabove 10 Mb in subfigure d and e, are not displayed. The input dataset
is given inSupplementary Tabl&, and all resulting tables are givenSupplementary Tabl8.
Statistical analyses and visualization were done (R Rore Team 2022)

Variations of basic genomic features

We counted a total of 25 basic genomic features, which are summarized in Supplementary
Table 1. Results of correlation analyses among these features suggested that some features are
highly correlated (Fig. 3, Supplementary Table @gnome size is positively correlated with TE
size with a Pearsonodés correlation coefficient
with the genome size without TEs (r = 0.86), suggesting that the TEs can increase the genome size
but nd the dominant factor. GC content is positively correlated to the GC content without TEs (r =
0.85) but negatively related to the TE size @0=6). In addition, GC content with TEs or without
TEs is influenced by TE size; the larger TE sizas the mairfactor forthe larger difference
observedbetween them, suggesting that TEs decrease the GC content of genomes. Genome size
without TE is positively correlated to the number of genes (r = 0.91), the number of exons (r =
0.90), and the number of intrors5 0.88). The latter two features, exons, and introns are important
structural components of genes, the numbers of which reasonably displayed high correlations with
the number of genes (r = 0.97; r = 0.93). The average length of genes is correlateaverdape
length of introns (r = 0.78) and the exons (r = 0.48), indicating that changes in intron length are the
leading cause of the variation of gene length compared to the exon. TE size is positively correlated
to the average and maximum lengths of rgesic regions (r = 0.60; r = 0.47) but not displays
significant correlations with gene structures including gene length, exon length, and intron length,
suggesting that TEs are the main factor to change the distance between genes without significant
influence on the gene structures. The minimum and maximum $eoigthultiple features (genes,
intergenic regions, introns, exons) exhibit relatively low correlatioth other features, or
correlations are not significant, except for the maximum length anawrage length of intergenic
regions (r = 0.70), the maximum length and the average length of introns (r = 0.6) and the
minimum length of introns and genes (r = 0.7). Overall, most basic genomic features display a low
correlation with each other, suggagtsome of which are stable and independent in evolution.

We also compared the group means of these 25 genomic features over all different taxonomic
ranks and lifestyles (Supplementary Table 5). We observed overall statistically significant
differencesm most genomic features (22/25) at the subclass level, excluding the minimum length
of exons, TE sizes, and the minimum length of tRNAs (Supplementary Table 5: sheet subclass).
The minimum length of exons is the only feature that does not show a signdfitfarence at the
order level (Supplementary Table 5: sheet order). Furthermore, at the family level all features
display significant differences (Supplementary Table 5: sheet family). Considering the groups with
different lifestyles, there are 6 genonfeatures without significant difference (Supplementary
Table 5: sheet lifestyle), which are the minimum length of exons, the average length of intergenic
regions, the minimum length of intergenic regions, the size of TEs, the GC content of TEs and the
maxmum length of tRNAs. In paired comparison analysis (Fig. 4), the 4 subclasses
Diaporthomycetidae, Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae formed 6
pairwise comparisons, 5 of which are significantly different in most features (SuppleyriEaitée
5: sheet pairwissubclass). Significantly, the number of genes and the number of exons display the
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most powerful resolution to differentiating the taxonomic groups at the subclass level. At the order
level (36 pairwise comparisons in total) aramily level (91 pairwise comparisons in total), we
observed a clear downward trend of significant differences, suggesting that all features lack
resolutions at lower taxonomic levels (Supplementary Table 5: sheets pardeseand pairwise
family). Howe\er, relatively low proportions of significantly different comparisons (15 pairwise
comparisons) were observed across all feathedseendifferent lifestyles (Supplementary Table

5: sheet pairwiséifestyle). Moreover, clustering analysis shows that ssvieatures (TE size, the
minimum length of tRNAs, the minimum length of exon, and the minimum length of gene) display
little usefulness in distinguishing different taxonomic groups, and most features are useless in
differentiating different lifestyles.
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Figure 3 1 Correlation analysis of 25 basic genomic featudesmdder heatmap of Pearson
correlation coefficients of all pairwise genomic features. The colors and values in small squares
indicate the degree of positive correlation (red) or negative atioel (blue). No significant
correlated comparisong £ 0.05) were displayed in white and blank squares. Pearson correlation
coefficients were calculated (the function stats::cor), and the significance test was conducted (the
function corrplot::cor.mtest)The figure was plotted using the package corrplot with the resulting
datasets in Supplementary Table 4. Values of these 25 features are provided in Supplementary
Table 1.
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Although, not all features showed strong discrimination in distinguishing one fijmoughe
other groups, a high proportion of significant differences in some genomic features was observed in
specified comparisons. For instance, at the subclass level (Supplementary Table 5: sheet class
class), there are 18, 17, 15, 15 and 15 signifigadifferent features present in the pairwise
comparisons of HypocreomycetidXglariomycetidae, Hypocreomycetid&ordariomycetidae,
Diaporthomycetida¢lypocreomycetidae, Diaporthomycetiddglariomycetidae and
Sordariomycetida&ylariomycetidae. Likewisea high proportion of some features were observed
at the order and family levels (Supplementary Table 5: sheets-amdar and familyfamily).
These results suggest that some features are useful in differentiating specified taxonomic groups,
especially m phylogenetically distant comparisons. As for lifestyles, the largest difference
genomic featuresvereobserved in the comparisons of entomopathogéenrst pathogens (15/25),
followed by entomopathogerendophytes (9/25), and the rest of the compasisdisplagd
minimal differencesat best especially in the comparisons of endopmgagrotrophs (0/25,
mycoparasitesaprotrophs (0/25), endophyiesgcoparasites (0/25), human pathogens
mycoparasites (1/25), human pathogplant pathogens (1/25), andrhan pathogensaprotrophs
(1/25) (Supplementary Table 4: sheet lifestifiestyle). It suggests that based on these basic
genomic features it is difficult to differentiate compared lifestyles. In other words, we could not
correctly assign a lifestyle lab®r a new taxon with very similar genomic features, to endophytes,
saprotrophs, mycoparasites and entomopathogens.
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Figure 41 Resolution powers of 25 basic genomic features in differentiating different taxonomic
groups and lifestylesstacked bar pks of the number of significantly (orangex = 0.05) and non
significantly (greenp > 0.05) different comparisons across all features based on their taxonomic
ranks and lifestyles. Dunn test (the function rstatix::dunn_test) was used to compare the mean
The cluster analysis was performed (the function stats::dist) with the dataset in Supplementary
Table 4 sheet: clusteriagatrix to obtain a Euclidean distance matrix, then to cluster these features
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with the Acompl et eo agglstamwmecluatl. Allodatasetseatehgivesh in( t h
corresponding sheets in Supplementary Table 5.

Overview of functional protein groups

A total of 24 functional protein groups were summarized in Supplementary Table 1 and
visualized in Supplementary Fig. 2. To &xe the correlation between the number of the proteome
and the number of each functional protein group we include the feature of proteomes equivalent to
the number of protewcoding genes in the last part of the correlation analysis (Fig. 5;
SupplementaryTable 6). The result shows that 66.67% (16/24) of protein groups are highly
positively correlated (r > 0.6) with the total number of the proteome. The main subgroups of the
secretome, the number of CAZymes, protease, lipase, SSPs, secreted effecttivargdndational
proteins are highly positively correlated with the total humber of secretomes with the Pearson
correlation coefficient of 0.95, 0.93, 0.86, 0.87, 0.96 and 0.97, respectively. The six subgroups of
CAZymes display varying degrees of corraatiwith the total number of CAZymes. The AAs,
GHs, CEs and PLs display high correlation with the Pearson correlation coefficient of 0.97, 0.97,
0.88 and 0.88, respectively. The number of CBMs displays a relatively high correlation (r = 0.57)
with CAZymes,whereas the GTs display a low correlation (r = 0.29) with CAZymes. As for the
more specified functional subgroups of CAZymes, the numbers of PCWDEs,-pegtading
enzymes, hemicellulosgegrading enzymes, and celluladegrading enzymes, are highly
correlated with the total number of CAZymes with the Pearson correlation coefficients of 0.97,
0.90, 0.89 and 0.87, respectively, followed by ligdegrading enzymes and gluedegrading
enzymes with relatively high correlation coefficients of 0.54 and 06&.numbers of FCWDEs,
chitin-degrading enzymes and mansageyrading enzymes display relatively low correlation with
CAZymes, the correlation coefficients of which are 0.41, 0.31 and 0.22 respectively, and no
significant correlation was observed betweeptigeglycandegrading enzymes and CAZymes. We
also noticed the high correlations between several specified functional subgroups of CAZymes,
such as FCWDEs and chitdegrading enzymes with correlation coefficients of 0.9, FCWDEs and
glucandegrading enzyn®e with correlation coefficients of 0.82, which are mainly due to the
overlapping functional proteins (Supplementary Table 6). Compared with the correlation matrix of
genomic features (Fig. 3), most functional proteins are more stable in number, shoxeing of t
co-evolution except for mannastegrading enzymes, GTs, and peptidoglydagrading enzymes.

The discrimination of these 24 functional protein groups was visualized by comparing the
numbers of significantly different pairwise comparisons and rgtifstantly different pairwise
comparisons (Fig. 6, Supplementary Table 7). Compared with the discrimination of 25 basic
genomic features, apparent increases in functional protein groups were observed at the taxonomic
levels and lifestyles. At the subclaksrel, more than half (15/24) of these protein groups are
powerful in differentiating subclasses (n > 3, Supplementary Table 7: sheet -olasti),
especially the number of CBMs and mamsgrading enzymes with 100% resolution
(Supplementary Table 7sheet pairwissubclass). However, CEs, hemicellulakgrading
enzymes and PCWDEs display low resolution, especially the latter two. At the order and family
levels (Table S7: sheets pairwiseder and pairwiséamily), the numbers of significantly diffemée
pairwise comparisons increase with the total number of pairwise comparisons, but the proportion of
significantly different pairwise comparisons for each protein group decreases, most notably in
CBMs and mannadegrading enzymes. Although the numbersP@WDEs and hemicellulose
degrading enzymes aigsignificantin differentiating subclasses, we noticed that PCWDEs can
distinguish more than half of the pairwise comparisons at the order level (23/36) and the family
level (48/91), and hemicelluloskegradng enzymes can distinguish more than half of the pairwise
comparisons at the order level (19/36) and nearly half at the family level (3819%Bgards to
lifestyles (Supplementary Table 7: sheet pairdif@style), we noted distinct decreases in the
proportion of significantly different pairwise comparisons for certain protein groups, as well as
observed increased proportions, such as ghicatulose, and hemicellulosdegrading enzymes.
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Figure 51 Correlation analysis of 24 functional protein gps and proteomekadder heatmap of
Pearson correlation coefficients of all pairwise genomic features. The colors and values in small
squares indicate the degree of positive correlation (red) or negative correlation (blue). No
significant correlated compaons p > 0.05) were displayed in white and blank squares. Pearson
correlation coefficients were calculated (the function stats::cor), and the significance test was
conducted (the function corrplot::cor.mtest). The figure was plotted using the packauet eath

the resulting datasets in Supplementary Table 6. Values of these 24 functional protein groups and
the total number of proteomes are provided in Supplementary Table 1.

We also counted the significantly different protein groups in each paiosis@arison. At
the class level (Supplementary Table 7: sheets suksilds$ass), the most notable subclass is
Xylariomycetidae, which has 17 significantly different protein groups with Diaporthomycetidae, 16
with Hypocreomycetidae and Sordariomycetidabe Tsmallest difference was observed in the
pairwise comparison of Diaporthomycetidae and Sordariomycetidae with 12 significantly different
protein groups. In other words, Xylariomycetidae is the easiest to be distinguished from other
subclasses. At the aedlevel (Supplementary Table 7: sheet omleler), the most notable order is
Ophiostomatales, which has 22 significantly different protein groups with Glomerellales and
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