Annotated notes on *Diaporthe* species

Hongsanan S\(^1\,2\,3\), Norphanphoun C\(^2\,4\,5\,*\), Senanayake IC\(^3\,6\), Jayawardena RS\(^2\,4\,5\), Manawasinghe IS\(^6\), Abeywickrama PD\(^2\,4\,5\,7\), Khuna S\(^1\), Suwannarach N\(^1\), Senwanna C\(^1\), Monkai J\(^1\), Hyde KD\(^2\,4\,5\,6\), Gentekaki E\(^2\,4\), and Bhunjun CS\(^2\,4\,*\)

\(^1\)Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
\(^2\)School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
\(^3\)Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
\(^4\)Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
\(^5\)Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
\(^6\)Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, P.R. China

Abstract

Diaporthe is a large and taxonomically complex genus, with over a thousand epithets listed in Index Fungorum. The placement of many *Diaporthe* species remains confusing, and there is a lack of consensus on their taxonomy and phylogeny. In this study, we provide annotated notes on accepted or presumed species of *Diaporthe* up to 2023. Our notes cover 832 species and include information on their morphology, ecology, geographic distribution, molecular data, and pathogenicity, where available. *Diaporthe cyatheae* comb. nov., *D. pseudobauhiniae* nom. nov., *D. xishuangbannaensis* nom. nov., *D. krabieiensis* sp. nov., and *D. pseudobiguttulata* nom. nov. are introduced in this paper. In addition, we list 331 species that were previously classified as *Diaporthe* but are no longer accepted as members of the genus. Our comprehensive review of *Diaporthe* species provides a resource for researchers and taxonomists, enabling accurate identification and classification, and enhancing our understanding ecological roles of these fungi.

Keywords – *Diaporthaceae* – Morphology – Plant disease – Species complexes

Introduction

Diaporthe belongs in Diaporthaceae, Diaporthales, Diaporthomycetidae, Sordariomycetes, Ascomycota (Senanayake et al. 2018, Wijayawardene et al. 2022), and is a widely distributed genus with diverse ecological roles. *Diaporthe* species comprise pathogens, endophytes, and saprobes, and are associated with a wide range of hosts (Dissanayake et al. 2017a, Bhunjun et al. 2022). Notably, several species in this genus have been reported as pathogens of economically important
plants and can cause various plant diseases, such as diebacks, cankers, leaf spots, blights, melanoses, stem-end rot, and gummosis, affecting diverse hosts such as sunflower, grapevine, and citrus (Gomes et al. 2013, Udayanga et al. 2013, Gopal et al. 2014, Manawasinghe et al. 2019, Zapata et al. 2020, Caio et al. 2021, Udayanga et al. 2013).

Previously, *Diaporthe* species were identified based on morphological characteristics and host specificity (Uecker 1988, Ferreira et al. 2015). However, it has been recognized that *Diaporthe* species are not host-specific, and several different species can be found on a single host (Brayford 1990, Rehner & Uecker 1994, Mostert et al. 2001, Farr et al. 2002). The identification of *Diaporthe* species based solely on morphological data is challenging due to their polyphyletic nature and the presence of numerous cryptic species (Dissanayake et al. 2017a, Gao et al. 2017, Norphanphoun et al. 2022). The polyphyletic nature of *Diaporthe* species and the presence of numerous cryptic species poses challenges in their identification based solely on morphological data (Dissanayake et al. 2017a, Gao et al. 2017, Norphanphoun et al. 2022). To overcome this challenge, molecular approaches have become essential for accurate identification and comprehensive characterization of *Diaporthe* species (Santos & Phillips 2009, Diogo et al. 2010, Luongo et al. 2011, Udayanga et al. 2012a, b, Thomidis et al. 2013, Gao et al. 2017). Phylogenetic analysis based on the effective multilocus phylogeny, including internal transcribed spacers (ITS), the translation elongation factor 1-α (*tef1-α*), β-tubulin (*tub2*), calmodulin (*cal*), and histone H3 (*his3*), along with morphological characteristics have been used to accurately identify *Diaporthe* species (Gomes et al. 2013, Yang et al. 2018a, Udayanga et al. 2012a, 2015, Guarinacci et al. 2018, Dissanayake et al. 2017a, 2020, Santos et al. 2017, Bhunjun et al. 2022, Monkai et al. 2023). However, *Diaporthe* comprises a large number of species, and the taxonomic placement of these species within the genus is considered confusing (Dissanayake et al. 2017a). Norphanphoun et al. (2022) accepted 13 species complexes to facilitate species identification within the genus based on strongly supported clades that revealed consistent placements in both combined and single gene trees (Norphanphoun et al. 2022). Detailed information on each species complex and the species included in each complex, were provided in Norphanphoun et al. (2022). Bhunjun et al. (2022) conducted an extensive dataset of *Diaporthe* sequences and identified misidentifications of several species. They also highlighted the need of larger-scale analyses to improve the taxonomic and phylogenetic resolution within the genus (Rokas & Carroll 2005, Norphanphoun et al. 2020, Bhunjun et al. 2020, 2021). Hyde et al. (2020) proposed that the significant recombination level within closely related species should be considered as a method to justify a species. Therefore, recent studies have employed analyses such as the Genealogical Phylogenetic Species Recognition principle (GCPSR), General Mixed Yule Coalescent (GMYC), and the coalescent-based model Poisson Tree Processes (PTP), to determine the species delimitation among their closely related species (Chaisiri et al. 2021, Hilário et al. 2021a, b, c, Monkai et al. 2023). The asexual state of *Diaporthe* is *Phomopsis*, but as only a single name can be used for one genus, all species are now placed under the former (Wijayawardene et al. 2021).

In this paper, we provide notes on accepted species or presumed species of *Diaporthe* and compile a list of species that are no longer accepted in *Diaporthe*. We provide information on pathogenicity of *Diaporthe* species when relevant reports are available. Additionally, the geographical distribution of each species and details regarding their type materials are also provided. To ensure the most up-to-date understanding of *Diaporthe* species, we have incorporated significant updates by integrating recent publications and findings into our notes.

Annotated species list

Diaporthe abdita Sacc. & Speg., Michelia 1(no. 4): 391 (1878)

- Typification details – Holotype, PAD, Saccardo, 1877–78
- Host – *Melia azedarach* (Meliaceae)
- Distribution – Europe (Austria, Italy), South America (Argentina), North America (USA)
The species was found on *Melia azedarach* in Italy and was introduced by Spegazzini & Saccardo (Saccardo 1878). *Diaporthe abdita* is characterized by immersed perithecia, clavate to cylindrical asci, 70–80 × 10 µm, oblong, 1-septate, 4-gutteles, hyaline ascospores, 15 × 5 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A
Host – *Lobelia salicifolia* (Campanulaceae)
Distribution – South America (Chile)

Notes – *Diaporthe aberrans* was found on dead stems of *Lobelia salicifolia* in Chile (Spegazzini 1910). The species is characterized by perithecial ascomata immersed in the host tissue, subcylindrical asci, 65–70 × 10–12 µm, oblong to elliptical, hyaline ascospores, with 1-septate and 3–4-gutteles (Spegazzini 1910). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A
Host – Unidentified host
Distribution – Europe, North America

Notes – *Diaporthe abnormis* was combined with *Calospora occulta* and *Melaconis apocrypta* (Höhnel 1917). The sexual morph of this species was described and comprises yellowish to brown ascospores (Höhnel 1917). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe abutilonis Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 367 (1909)

Typification details – N/A
Host – *Arbutus sordidus* (Ericaceae)
Distribution – South America (Argentina)

Notes – *Diaporthe abutilonis* was introduced by Spegazzini (1909). The species was found on rotten branches of *Arbutus sordidus* in Argentina. It is characterized by globose perithecial ascomata, 100–120 µm diam., with fusoid to subclavate asci, 45–50 × 7–8 µm, ap paraphysate, and 1-septate, cylindrical to fusoid ascospores, 12–14 × 3–4 µm. The asexual morph is undetermined (Spegazzini 1909). Sequence data is not available for this species.

Diaporthe acaciae Tilak, Sydowia 20(1–6): 272 (1968)

Typification details – Holotype, MUH202
Host – *Acacia arabica* (Fabaceae)
Distribution – Asia (India)

Notes – The species was reported as being associated with dead stems of *Acacia arabica* in India (Tilak 1968). The sexual morph of *Diaporthe acaciae* is characterized by emerged ascomata raising the surface of the bark, clavate asci, 64–88 × 6.4–8 µm, narrowly fusiform, 3–4 oil drops, hyaline ascospores, 14.5–17.5 × 4–5 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe acaciarium Crous & M.J. Wingf., Persoonia 33: 243 (2014)

Typification details – Holotype, CBS H-21994; ex-type, CPC 24324 = CBS 138862
Host – *Acacia tortilis* (Fabaceae)
Distribution – Africa (Tanzania)

Notes – *Diaporthe acaciarium* was introduced by Crous et al. (2014a). The species was isolated from thorns of *Acacia tortilis* in Serengeti, Tanzania. *Diaporthe acaciarium* sporulated in
pine needle agar (PNA) media, and produced pycnidial conidiomata, with fusoid to ellipsoid, hyaline alpha conidia, 6.5–7 × 2.5 μm, and aseptate, spindle-shaped, hyaline beta conidia, 25–35 × 1.5 μm. A detailed description of the asexual morph was given by Crous et al. (2014a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe acaciigena_ clustered in the _D. sojae_ species complex.

Typification details – Holotype, CBS H-20581; ex-type, CPC 17622 = CBS 129521
Host – _Acacia retinodes_ (Fabaceae)
Distribution – Oceania (Australia)

Notes – _Diaporthe acaciigena_ was introduced by Crous et al. (2011a) from the leaf of _Acacia retinodes_ in Australia. The species was observed from sporulating in potato dextrose agar (PDA) and produced pycnidial conidiomata, 9–12 × 4–7 μm, ellipsoid to subclavate and aseptate conidia, with a visible flat hilum when young, and 7–10 × 1.5–2 μm, allantoid, hyaline, beta conidia. A detailed description of the asexual morph for this species was given by Crous et al. (2011a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe acaciigena_ was initially placed within the _D. amygdali_ species complex (= _D. pustulata_ species complex). However, based on GMYC, PTP analyses, and phylogenetic network (Hilário et al. 2021a), _D. acaciigena_ is a distinct species separate from _D. amygdali_ species complex. Thus, it does not belong to the _D. amygdali_ species complex.

Typification details – Holotype, MFLU 15-3254; ex-type, MFLUCC 17-0956
Host – _Acer negundo_ (Sapindaceae)
Distribution – Europe (Italy)

Notes – _Diaporthe acericola_ was introduced by Dissanayake et al. (2017b). The species was found on dead aerial branches and samaras of _Acer negundo_ (Sapindaceae) in Italy. _Diaporthe acericola_ has solitary and scattered, superficial conidiomata, fusiform or oval alpha conidia, 9.7–13.5 × 3–4.5 μm. A detailed description of the asexual morph for this species was given by Dissanayake et al. (2017b). The sexual morph was not observed.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe acaciigena_ clustered in the _D. sojae_ species complex.

Typification details – Holotype, BJFC-S1466; ex-type, CFCC 52554
Host – _Acer tataricum_ (Sapindaceae)
Distribution – Asia (China)

Notes – _Diaporthe acerigena_ was reported by Tian & Yang (Yang et al. 2018a), from symptomatic twigs of _Acer tataricum_ in China. The species was observed sporulating in PDA, and produced pycnidial, globose, dark brown to black, conidiomata, deeply embedded in the media, with branched conidiophores, and ellipsoid, aseptate, with 2 oil droplets, hyaline alpha conidia, 7–10 × 2.1–2.9 μm, beta conidia not observed. The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe acerigena_ clustered in the _D. eres_ species complex (= _D. alnea_ species complex).

Diaporthe acerina (Peck) Sacc., Syll. fung. (Abellini) 1: 611 (1882)

Typification details – Holotype, Peck s.n.
Hosts – _Acer palmatum_ var. _matsumurae_, _A. pensylvanicum_, _Acer sp._, _A. spicatum_ (Sapindaceae)
Distribution – Europe (Denmark, Poland), North America (Canada, USA)
Diaporthe acerina was reported by Saccardo et al. (1882) as a synonym of Valsa acerina. The species was found on dead branches of Acer spicatum in New York. It has immersed, black stromata, oblong to sub-ellipsoidal conidia, 12.5 µm (Saccardo et al. 1882). The epithet species name acerina and albocincta date to 1877 and both V. acerina and V. albocincta were mistakenly introduced based on same specimen (Saccardo 1882a). Thus, Farr et al. (1989) accepted D. acerina and listed D. albocincta as a synonym. However, D. albocincta is listed as a distinct species in Index Fungorum (2023). Therefore, we treat D. acerina and D. albocincta as separate species. Further studies are needed to clarify their relationship and resolve the confusion surrounding their classification.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe acerina is sister to D. perjuncta (a singleton species) with 100% ML bootstrap support, thus they are kept as singleton species.

Diaporthe actinidiae N.F. Sommer & Beraha, Mycologia 67(3): 650 (1975)
Typification details – Holotype, BPI 71849
Hosts – Actinidia chinensis, A. delicosa (Actinidiaceae), Capsicum annuum (Solanaceae), Malus domestica (Rosaceae).
Distribution – Asia (China, South Korea), Europe (Portugal, Korea, Spain), North America (USA), Oceania (Australia, New Zealand)
Notes – Diaporthe actinidiae was reported on the fruit of Actinidia chinensis in New Zealand by Sommer & Beraha (1975). The species caused fruit rot of Actinidiae spp. (Sommer & Beraha 1975, Lee et al. 2001), fruit decay on pepper in China (Zhang et al. 2016) and stem canker of kiwifruit in China (Bai et al. 2017). Both morphs of this species have been reported. Diaporthe actinidiae was observed sporulating on diseased fruit and PDA. The sexual morphs have been mostly detected from fresh materials. Morphological characters comprise embedded perithecia, ostioles, with necks sinuous, filiform, in black, elevated erumpent stroma, singly or in irregular clustered, and necks bluntly rounded and brown, with clavate ascii, and fusoid to ellipsoid, 1-septate, constricted at the septum, hyaline ascospores. The asexual morph has ellipsoidal to fusiform, unicellular, 2-guttules, hyaline alpha conidia, filiform to hamate, unicellular, hyaline beta conidia (Sommer & Beraha 1975, Lee et al. 2001, Zhang et al. 2016, Bai et al. 2017). Lee et al. (2001) confirmed that D. actinidiae caused stem-end rot of kiwifruit in Korea. The same research confirmed this species as causing disease in pears and apples. Li et al. (2017) reported D. actinidiae as causing stem-end rot of kiwifruit during post-harvest in China. Zhang et al. (2016) tested the pathogenicity of the species on pepper and reported it as the cause of fruit decay of pepper in China. Pintos-Varela et al. (2000) performed pathogenicity tests on kiwi.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe actinidiae clustered in the D. sojae species complex, with each strain dispersed throughout the D. sojae species complex.

Diaporthe aculeata (Schwein.) Sacc., Syll. fung. (Abellini) 1: 659 (1882)
Typification details – Holotype, PH Schweinitz s.n., (holotype of Sphaeria aculeata)
Hosts – Phytolacca americana, P. decandra, Phytolacca sp. (Phytolaccaceae)
Distribution – North America (USA)
Notes – Diaporthe aculeata was reported as Sphaeria aculeata. This species was first found on Phytolacca in Pennsylvania, USA (Saccardo 1882a). The morphological species comprised immersed ascomata, globose and black with long ostiole (Schweinitz 1832, Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe acus (A. Bloxam ex Curr.) Cooke, Grevillea 7(no. 43): 81 (1879)
Typification details – N/A
Host – N/A
Distribution – Europe (Great Britain)
Notes – Diaporthe acus was reported as Sphaeria acus. Later it was transferred to Diaporthe by Cooke & Plowright (1879). The sexual morph of this species was reported in Currey (1859) with small perithecia, subglobose, flattened, covered by the epidermis pierced by the sharp-pointed minute ostiole, biseriate, or crowded, narrowly cylindrical, with rounded ends, or acuminated at the ends and then almond-shaped spores, 7.6 × 10 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HMAS 248147; ex-type, CGMCC 3.19600 = PSCG 047
Host – Acer palmatum (Sapindaceae), Pyrus pyrifolia cv. Cuiguan (Rosaceae)
Distribution – Asia (China)
Notes – Diaporthe acuta was found from branches of Pyrus pyrifolia cv. Cuiguan in China. The species was introduced based on phylogenetic analyses of five loci ITS, tef1-α, cal, his3, and tub2 and the asexual morph morphological characteristics. There are no important morphological characters to distinguish it from other Diaporthe species (Guo et al. 2020). This species produced only alpha conidia, while beta and gamma conidia were not observed. The sexual morph is undetermined. A pathogenicity test confirmed that D. acuta causes disease in Pyrus pyrifolia (Guo et al. 2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe acuta clustered in the D. arecae species complex.

Typification details – Holotype, HMAS 247086; ex-type, CGMCC 3.18285 = LC 6161
Host – Coffea sp. (Rubiaceae)
Distribution – Asia (China)
Notes – Diaporthe acutispora was reported by Gao et al. (2017) from healthy leaves of Coffea sp. in China. The description and illustration of its asexual morph were provided by Gao et al. (2017). The morphological species was observed from fungal sporulated in PNA, which produced larger conidia than other species found from Coffea and Camellia. The sexual morph is not reported.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe acutispora formed a distinct clade with low bootstrap support. Thus, we accept it as a single species.

Typification details – N/A
Host – Plantago lanceolata (Plantaginaceae)
Distribution – Europe (Germany, France, The Netherlands, Romania), Oceania (New Zealand)
Notes – Diaporthe adunca was introduced based on Sphaeria adunca by Desmazières (1851). The species was found on old stalks of Plantago lanceolata. The original paper did not mention the country where the type specimen was collected. However, some collections deposited in the fungal herbaria as D. adunca indicate its distribution in Germany, France, New Zealand, The Netherlands, and Romania (mycoportal.org). Diaporthe adunca has been identified as the causal agent of stalk disease in Plantago lanceolata (Linders 1996, Marak 2002). The species has widely spread, purplish-black stroma, scattered perithecia, with short cylindrical ostiole, spindle-shaped, mostly straight, rarely slightly curved, 1-septate, hyaline or very pale yellowish spores, with 4 small droplets, 12–14 µm long, 3 µm thick (Niessl 1872). Sequence data is not available for this species.

Diaporthe aesculi Cooke & Harkn., Grevillea 9(no. 51): 86 (1881)
Typification details – Holotype, Harkness 1463
Host – Aesculus californica (Sapindaceae)
Distribution – North America (USA)
Notes – The species was found on Aesculus californica in California, USA. It is characterized by depressed-globose perithecia, lanceolate, sessile asci, with sublanceolate, straight, 4-nucleated ascospores, 18 × 3.5 μm (Cooke & Harkness 1881). Sequence data is not available for this species.

Diaporthe aesculicola Cooke
≡ Valsa aesculicola Cooke, Grevillea 14(no. 70): 47 (1885)
Typification details – Holotype, K(M), anon. s.n.
Host – Aesculus hippocastanum (Sapindaceae)
Distribution – Europe (England, Great Britain)
Notes – Diaporthe aesculicola was reported by Berlese & Voglino in Saccardo (1886) and is the current name of Valsa aesculicola (Cooke 1885), a fungus from branches of Aesculus hippocastanum in Great Britain, England. The morphological species is characterized by clavate asci, 24 × 4 μm, biseriate, fusoid, 1-septate and hyaline ascospores (Cooke 1885). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 59930a
Host – Callistachys lanceolata (Fabaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe aestuarium was introduced by Tan & Shivas (2022) based on molecular data. It was found from the stems of Callistachys lanceolata in Western Australia. In the phylogenetic tree constructed using ITS, tub2, and tef1-α sequences, D. aestuarium formed as a sister species to both D. grandiflori and D. zaofenghuag with 100% ML and 1.0 PP support (Tan & Shivas 2022).

Diaporthe aetoxici Sppeg., Boln Acad. nac. Cienc. Córdoba 25: 62 (1921)
Typification details – Holotype, Spegazzini, 1917
Host – Aextoxicicon punctatum (Aextoxicaceae)
Distribution – South America (Chili)
Notes – Diaporthe aetoxici was reported by Spegazzini (1921), on branches of Aextoxicicon punctatum in Atacama, Chile. The morphological species comprises pycnidial with immersed ascomata, sub-fusoid asci, 50–55 × 10 μm, with ellipsoid to subclavate, contents granular, 1-septate ascospores, 15–16 × 4 μm (Spegazzini 1921). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe afzeliae Monkai & S. Lumyong, Journal of Fungi 9(6): 7 (2023)
Typification details – Holotype, CMUB39998; ex-type, SDBR-CMU467
Host – Afzelia xylocarpa (Fabaceae)
Distribution – Asia (Thailand)
Notes – The species was introduced by Monkai et al. (2023). It was found as a saprobe on dead wood of Afzelia xylocarpa in Chiang Mai, Thailand. Diaporthe afzeliae formed a distinct lineage within D. arecae species complex and it is closely related to the clade containing D. searlei and D. pterocarpicola (Monkai et al. 2023). However, D. afzeliae differs from D. searlei by its wider alpha conidia (5.6–10.4 × 2.3–2.8 vs. 5–9 × 1.5–2 μm) and differs from D. pterocarpicola by its narrower alpha conidia (5.6–10.4 × 2.3–2.8 vs. (5)–6–7(–8) × (2–)2.5(–3.5) μm) (Udayanga et al. 2012, Wrona et al. 2020, Monkai et al. 2023). Additionally, D. afzeliae was found as a saprobe, while D. searlei and D. pterocarpicola were associated with husk rot of Macadamia sp. and infected leaves of Pterocarpus indicus, respectively (Udayanga et al. 2012, Wrona et al. 2020, Monkai et al. 2023).
Diaporthe aggerum Sacc. & Speg., Michelia 1(no. 4): 387 (1878)
 Typification details – Holotype, PAD, Saccardo, 1877
 Host – Lotus corniculatus (Nelumbonaceae)
 Distribution – Europe (Italy)
 Notes – Diaporthe aggerum was reported by Saccardo & Spegazzini in Saccardo (1878), found from stems of Lotus corniculatus in Italy. The morphological species produced perithecial and globose ascomata, fusoid asci, 50–60 × 7 µm, paraphyses, ovate to fusoid, 1-septate, constricted at the septum, with 4 oil droplets, hyaline ascospores, 14–16 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe ahmadii Wehm., Biologia, Lahore 10: 8 (1964)
 Typification details – Holotype, BPI 615545
 Host – Hedera nepalensis (Araliaceae)
 Distribution – Asia (Pakistan)
 Notes – Diaporthe ahmadii was reported by Wehmeyer (1964). The species was found from stems of Hedera nepalensis in Pakistan (Ahmad 1969, 1978). However, the authors were unable to find the original description of the species. Sequence data is not available for this species.

 Typification details – Holotype, AMH 7454
 Host – Ailanthus excelsa (Simaroubaceae)
 Distribution – Asia (India)
 Notes – Diaporthe ailanthicola was reported by Pande & Rao (1991), on petioles of Ailanthus excelsa in India. However, the authors were unable to find the original description of the species. Sequence data is not available for this species.

 Typification details – Holotype, BJFC-S1468; ex-type, CFCC 52556
 Host – Alangium kurzii (Cornaceae)
 Distribution – Asia (China)
 Notes – Diaporthe alangii was reported by Yang et al. (2018a), on symptomatic branches of Alangium kurzii in Tianmu Mountain, Zhejiang Province (China). The morphological species was observed from pycnidial conidiomata, immersed in bark, produced globose conidiomata, deeply embedded in the medium, dark brown to black, unbranched conidiophores, producing ellipsoidal, hyaline, 1-celled, with 2-guttules alpha conidia, 6.5–8 × 2 µm, while beta conidia not observed. Additional species identification details are available in Yang et al. (2018a) and Du et al. (2021). Du et al. (2021) provided information on pathogen ecology of seven Diaporthe species found from Actinidia chinensis and A. delicosa in China (D. alangii, D. compactum, D. eres, D. hongkongensis, D. sojae, D. tectoneae, and D. unshiuensis). The pathogenicity tests were performed on kiwifruit fruits, leaves and branches, and indicated that D. alangii and D. tectoneae are the most aggressive species among the seven species which caused significant disease symptoms on wounded leaves, branches, and fruits. In addition, all these seven species did not cause disease symptoms on unwounded leaves, branches, and fruits. Thus, they can be endophytes and opportunistic pathogens and later can be saprobic on dead host tissues (Du et al. 2021).

 In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe alangii clustered in the D. sojae species complex.

Diaporthe albocincta (Cooke & Peck) Sacc., Syll. fung. (Abellini) 1: 610 (1882)
 Typification details – Holotype, Peck s.n.
 Host – Acer sp., Acer spicatum (Sapindaceae)
 Distribution – North America (USA)
Notes – *Diaporthae albocincta* was introduced by Saccardo (1882a). It was found on *Acer spicatum* in New York, USA. The species is characterized by perithecia with a black circumscribing line, extending deeply into the wood, elliptical, 1-septate, slightly constricted, uniseriate spores, 18 × 6 μm (Cooke 1877a). Sequence data is not available for this species.

Diaporthae albosinensis C.M. Tian & Q. Yang, MycoKeys 67: 9 (2020)

Typification details – Holotype, BJFC-S1670; ex-type, CFCC 53066
Host – *Betula albosinensis* (Betulaceae)
Distribution – Asia (China)
Notes – *Diaporthae albosinensis* was introduced based on morphological characters and multigene analysis (Yang et al. 2020). Morphological characters comprise solitary to aggregated, conical pycnidial conidiomata, undivided locule, with yellowish to brown ectostromatic disc, one medium black ostiole per disc, phialidic, unbranched, cylindrical conidiophores, with fusiform, asperate, 0–1-guttules, hyaline alpha conidia, and filiform, straight or slightly curved, asperate, eguttulate beta conidia. A detailed description and illustration of the asexual morph was given by Yang et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree of Yang et al. (2020), this species is closely related to *D. fraxinicola*. However, *D. albosinensis* differs from *D. fraxinicola* in having shorter conidiophores (8.5–13 μm vs. 10.5–17.5 μm) and longer beta conidia (25.5–30 μm vs. 19–29.5 μm) (Yang et al. 2018a, 2020).

Diaporthae alniella P. Karst., Fung. Fenn. Exsicc., Cent. 9: no. 872 (1869)

Typification details – N/A
Host – N/A
Distribution – Europe (Finland)
Notes – We were unable to access the original paper or locate the type specimen. However, collection found from Finland was deposited at Harvard University’s Farlow Herbarium (FH).

Diaporthae amaranthi Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 360 (1909)

Typification details – Holotype, LPS, Spegazzini, Jul. 1905
Host – *Amaranthus chlorostachys* (Amaranthaceae)
Distribution – South America (Argentina)
Notes – *Diaporthae amaranthi* was reported by Spegazzini (1909), from rotten stems of *Amaranthus chlorostachys* in Santa Fé, Argentina. The species has fusoid asci, 45–50 × 8 μm, and elliptical, 1-septate, constricted at the septum, 4–guttules, hyaline ascospores, 10–12 × 4 μm (Spegazzini 1909). The asexual morph was not reported. Sequence data is not available for this species.

≡ *Phomopsis amaranthicola* Rosskopf et al., Mycologia 92: 117 (2000); nom. inval. (Art. 40.3)

Typification details – Holotype, UB 16099
Host – *Amaranthus tricolor* (Amaranthaceae)
Distribution – Asia (Japan), South America (Brazil)
Notes – *Diaporthae amaranthophila* was reported as fungi causing stem blight and leaf blight disease on *Amaranthus tricolor* in Brazil (Rossman et al. 2015, Minoshima et al. 2020). The asexual morph was described and illustrated by Inácio et al. (1999). Pathogenicity test confirmed the species as pathogenic fungi causing disease on *Amaranthus tricolor* (Minoshima et al. 2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthae amaranthophila* belongs to *Diaporthae* and clustered in the *D. sojae* species complex.
Diaporthe ambiens Fückel, Jb. nassau. Ver. Naturk. 27–28: 38 (1874) [1873–74]

Typification details – N/A

Hosts – *Cerastium triviale* (Caryophyllaceae), *Stellaria nemorum* (Caryophyllaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe ambiens* was reported by Fückel (1873). It was found from dried stems of *Cerastium triviale* in Germany. The morphology of this species was described in Fückel (1873), with perithecia nestling in stroma, and oblong, 2-guttules, hyaline spermatia, 8–10 × 4 μm. The sexual morph is undetermined. Sequence data is not available for this species.

Diaporthe ambigua Nitschke, Pyrenomyc. Germ. 2: 311 (1870)

= *Phomopsis velata* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 248 (1906)

= *Phoma velata* Sacc., Michelia 2(no. 6): 96 (1880)

Typification details – Holotype, B, Nitschke, Aug. 1866; epitype, CBS H-19685; ex-epitype, CBS 11401

Distribution – Africa (South Africa), Asia (China, Uzbekistan), Europe (Germany, Italy, Poland, Portugal, Spain, The Netherlands, United Kingdom), North America (Canada, USA), South America (Chile)

Notes – *Diaporthe ambigua* was reported by Nitschke et al. (1870) from *Pyrus communis* in Germany. It causes twig blight canker disease on the trunk and rootstock in various hosts, especially *Malus* spp. and *Pyrus* spp. (Rosaceae). The morphological species was described and illustrated in both sexual and asexual morph (Auger et al. 2013, Díaz et al. 2017, Thomidis et al. 2019). Pathogenicity test confirmed that it causes canker on apple, pear, and plum rootstocks (Smit et al. 1996), canker and dieback on pistachio trees (Nouri et al. 2019, Sakçı & Kurt 2022), cordon dieback of kiwifruits (Díaz & Latorre 2017), and is also a causal agent of kiwifruit rot during cold storage (Díaz et al. 2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe ambigua* clustered in the *D. sojae* species complex.

Diaporthe americana Speg., Michelia 1(no. 5): 457 (1879)

Typification details – Holotype, PAD, Spegazzini, Oct. 1877

Host – *Magnolia grandiflora* (Magnoliaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe americana* was reported by Spegazzini (1879) from dead branches of *Magnolia grandiflora* in Italy. The morphological characters of the sexual morph were described as having oblong to fusoid asci, 60 × 8–10 μm, a paraphysate. However, ascospores were not observed (Spegazzini 1879). The asexual morph was not reported. Sequence data is not available for this species.

Diaporthe amorphae Ellis & Everh., Erythea 2: 21 (1894)

Typification details – Holotype, NY-Bartholomew 941

Hosts – *Amorpha fruticose* (Fabaceae), *Maackia amurensis* var. *buergari* (Fabaceae)

Distribution – Asia (Japan), North America (Canada, USA)

Notes – *Diaporthe amorphae* was reported by Ellis & Everhart in Jepson (1894). The first report of this species was from the wood of *Amorpha fruticose* in Kansas, USA. The sexual morph was described as having globose or elliptical ascomata, 3–5 together in a stroma, with cylindrical ostiole, clavate to cylindrical asci, 50–55 × 6–8 μm, and oblong or elliptical ascospores, 8–10 × 3–4
\(\mu m\) (Jepson 1894). The asexual morph was not reported. Sequence data is not available for this species.

- *Cryptosporrella viticola* Shear, Phytopathology 1: 119 (1911)
- *Phoma viticola* Sacc., Michelia 2(no. 6): 92 (1880) Note: From Phomopsis viticola - Not Phomopsis viticola (Sacc.) Grove 1917 or Phomopsis viticola (Reddick) Goid. 1937.
 - *Phomopsis ampelopsidis* Petr. 1916
 - *Phomopsis viticola* (Sacc.) Sacc., Annls mycol. 13(2): 118 (1915)
 - *Phoma ampelina* Berk. & M.A. Curtis, Grevillea 2(no. 18): [81] (1873)

Typification details – Holotype, K(M) 58408; neotype, PREM 56460

Hosts – Leaves, stems, rachis of *Ampelopsis* spp., *Parthenocissus* quinquefolia, *Vitis* spp. (Vitaceae), *Crataegus pinnatifida* (Rosaceae)

Distribution – Africa (South Africa, Uruguay), Asia (Brunei, India, Israel, China, Japan, Sri Lanka), Europe (Bulgaria, Croatia, Czech Republic, France, Greece, Hungary, Italy, Poland, Portugal, Spain, Switzerland, Turkey, United Kingdom), North America (Mexico, USA), Oceania (Australia, New Zealand), South America (Brazil, Chile, Venezuela)

Notes – *Diaporthe ampelina* was reported by Gomes et al. (2013), which was transferred from *Phoma ampelina*, a fungal species that caused dieback on *Vitis* in Pennsylvania. Later, this species was reported worldwide as a pathogen causing leaf spots, cankers, and dieback disease in a wide range of hosts. Both morphs of this species were described and illustrated (Akgul et al. 2014, Lawrence et al. 2015). Although *D. neoviticola* is listed as a distinct species in Index Fungorum (2023), we keep this species as a synonym of *D. ampelina* following Gomes et al. (2013) who reported that *D. ampelina* is the older name of *D. neoviticola*. Future studies are needed to clarify the relationship between these species. The pathogenicity test confirmed *D. ampelina* as pathogenic fungi of *Vitis* (Akgul et al. 2014, Lawrence et al. 2015).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe ampelina* clustered in the *D. carpini* species complex.

Diaporthe ampelopsis (Ellis) Ellis & Everh., N. Amer. Pyren. (Newfield): 434 (1892)

- *Cryptosporrella ampelopsis* (Ellis) Sacc., Syll. fung. (Abellini) 2: XXXV (1883)

Typification details – Holotype, NY, Ellis s.n. (Ellis, N. Amer. Fung. 881); Other herbaria, BPI 615729, 615730, 615731

Host – *Parthenocissus quinquefolia* (Vitaceae)

Distribution – North America (USA)

Notes – *Diaporthe ampelopsis* was reported by Ellis & Everhart (1892), by synonymized *Valsa ampelopsis*, species found from the dead stem of *Parthenocissus quinquefolia* in Newfield, New Jersey, USA. The morphological species was described in Ellis & Everhart (1892) with perithecia seated on the surface of the wood and enveloped in the bark without any distinct stroma,
cylindrical ostiolate, with clavate to cylindrical asci, 70 × 12 µm, biseriate, oblong to elliptical, subacute, 1–4-nucleate, becoming 1-septate, hyaline spores, 18–22 × 7.5 µm. The asexual morph is undetermined. Sequence data is not available for this species.

≡*Diaporthe chongqingensis* Guo & G.P. Wang, Persoonia 45: 146 (2020)
≡*Diaporthe mediterranea* M. Leon, Rodríguez-Reina & Armengol, Agronomy 10: 17 (2020)
≡*Phomopsis amygdalina* Cananoco, Riv. Pat. Veg. 26: 157 (1936)

Typification details – Epitype, CBS-H 20420; ex-epitype, CBS 126679

Hosts – *Pieris japonica* (Ericaceae), *Prunus* spp. (Rosaceae), *Vitis vinifera* (Vitaceae)

Distribution – Asia (China), Europe (Portugal, Spain), North America (USA), South Africa (Africa), South America (Uruguay)

Notes – *Diaporthe amygdali* was established by Udayanga et al. (2012b), on twigs of *Prunus dulcis* in Portugal. It causes canker and blight disease on twigs and leaves, typically on *Prunus* spp. The morphological species was described and illustrated in Delacroix (1905) from its sexual morph. Gao et al. (2016) reported the ambiguous phylogenetic relationships between *D. amygdali*, *D. sterilis* and some of their new strains, thus raising questions about a putative species complex, named the *D. amygdali* complex in that study. Hilário et al. (2021a) showed that the *D. amygdali* species complex included *D. kadsurae*, *D. mediterranea*, and *D. sterilis* and constitutes a single species based on the GCPSR principle and coalescence-based models: GMYC and PTP methods.

Hilário et al. (2021a) combined phylogenetic analyses based on the GCPSR principle, GMYC and PTP coalescent methods, with morphology to delimit the species boundaries within the *Diaporthe amygdali* complex. Their results revealed that *D. amygdali*, *D. chongqingensis*, *D. fusicola*, *D. garethjonesii*, *D. kadsurae*, *D. mediterranea*, *D. ovoicicola*, *D. sterilis* and *D. ternstroemia* are conspecific constituting a single species. While *D. acaciigena* and *D. pustulata* were found to be well-delimited species separate from the *D. amygdali* species complex (Hilário et al. 2021a). However, Norphanphoun et al. (2022) included *D. pustulata* within this species complex and introduced “*D. pustulata* species complex” instead of the previously established “*D. amygdali* species complex” by Hilário et al. (2021a) based on the earlier publication year of *D. pustulata*.

In this study, we accept *D. acaciigena* and *D. pustulata* as distinct species that do not belong to the *D. amygdali* species complex based on the analyses conducted by Hilário et al. (2021a). Consequently, we also accept *D. amygdali* as a species complex. Therefore, *D. obtusifoliae*, which is closely related to *D. acaciigena*, and *D. silvicola* which is closely related to *D. pustulata* in the tree of Norphanphoun et al. (2022, Fig. 1), are not considered members of this species complex.

Diaporthe amygdalinae Fuckel, Fungi rhenani exsic., suppl. fasc. 5: no. 1995 (1867)

Typification details – N/A

Host – *Euphorbia amygdalina* (Euphorbiaceae)

Distribution – Europe (Germany)
Notes – *Diaporthe amygdalinae* was introduced by Fuckel (1867). It was found on the stems of *Euphorbia amygdalina* in Germany. We were unable to access the original paper or locate the type specimen.

Diaporthe anacardii (Early & Punith.) R.R. Gomes, Glienke & Crous, Persoonia 31: 15 (2013)
Type species in both morphs were provided by –
Typification details – Holotype, IMI 144866; epitype, CBS H-21101; ex-epitype, CBS 720.97
Host – *Anacardium occidentale* (Anacardiaceae)
Distribution – Africa (Guinea, Kenya, Nigeria), Asia (India, Myanmar), North America (Cuba), South America (Brazil)
Notes – *Diaporthe anacardii* was reported by Gomes et al. (2013), as a species causing inflorescence blight, drying of shoots and leaf spots of *Anacardium occidentale* in Kenya (Punithalingam et al. 1972). The species produced abundant pycnidia on PDA, fusiform, aseptate, seldom without guttules, 1-guttules at each end alpha conidia, and filiform, mostly curved, aseptate beta conidia (Punithalingam 1972). The detailed morphological description and illustration of asexual morph were mentioned in Punithalingam et al. (1972) and Gomes et al. (2013). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe anacardii* clustered in the *D. oncostoma* species complex.

≡ *Leptosphaeria nigrella* Auersw., in Gonnermann & Rabenhorst, Myc. Europ. Pyren. 5–6: tab. 12, fig. 163 (1869)
≡ *Phomopsis diachenii* Sacc., Annls mycol. 13(2): 118 (1915)
Typification details – Epitype, BPI 842091; ex-epitype, CBS 111592 = AR3776
Distribution – Asia (China), Europe (Austria, Bulgaria, Czech Republic, Denmark, France, Germany, Ireland, Lithuania, Poland, Portugal, Scotland, Sweden, Switzerland, United Kingdom), North America (USA)
Notes – *Diaporthe angelicae* was introduced by Castlebury et al. (2003) based on morphological characteristics and phylogenetic analysis. Although *D. angelicae* is listed as a synonym of *Mazzantia angelicae* in Index Fungorum (2023), we consider it a distinct species based on the phylogenetic placement of the type of *Sphaeria angelicae* (see Norphanphoun et al. 2022). The species was found on stems, living leaves, fruit, and seed in a wide range of hosts, especially the Apiaceae plant family causing stem decay and leaf spot disease (Wehmyr 1933). The morphological description and illustration of the species in both morphs were provided by
Castelbury et al. (2003) and Bastide et al. (2017). Pathogenicity tests confirmed the fungus is a seed rot pathogen (Bastide et al. 2017), which produced sexual morph in experiments.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe angelicae* clustered in the *D. sojae* species complex.

Typification details – Holotype, CNUCC 201901; ex-type, CNUCC 201901 = CFCC 53967
Host – *Cunninghamia lanceolata* (Cupressaceae)
Distribution – Asia (China)
Notes – *Diaporthe anhuiensis* was reported by Zhou & Hou (2019), on needles of *Cunninghamia lanceolata* in Anhui, China. The species produced pycnidia on PDA, with abundant, spindly or fusoid, 2-guttules, rarely multi-guttules alpha conidia, 7.6–10.4 × 2.2–3.6, beta and gamma conidia were not observed. The detailed description and illustration of the asexual morph are available in Zhou & Hou (2019).

In the phylogenetic tree Norphanphoun et al. (2022, Fig. 1), *Diaporthe anhuiensis* clustered in the *D. arecae* species complex.

Diaporthe anisomera Sacc. & Scalia, Harriman Alaska Expedition 5: 30 (1904)

Typification details – Holotype, Release 684b
Host – *Corylus* sp. (Betulaceae)
Distribution – North America (USA)
Notes – *Diaporthe anisomera* was reported by Saccardo & Scalia in Saccardo et al. (1904). The fungus was found on decorticated dead branches of *Corylus* sp. in Alaska, USA. This species is characterized by gregarious, erumpent stromata, globose perithecia, short-cylindrical ostiole, with fusoid to clavate asci, 80–90 × 11–13 µm, distichous, ovate, 1-septate, not constricted, hyaline spores, 14–17 × 5–5.5 µm, initially covered with an uneven mucous layer. The detailed description and illustration of the sexual morph were given by Saccardo et al. (1904). The asexual morph was not reported. Sequence data is not available for this species.

Typification details – Holotype, BRIP 59731a
Host – *Mangifera indica* (Anacardiaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe annellsiae* was introduced by Tan & Shivas (2022) based on molecular data. It was found from the fruit of *Mangifera indica* in Western Australia. In the phylogenetic tree based on ITS, *tuf2*, and *tef1*-α sequences, *D. annellsiae* is sister to *D. meliae* and *D. pterocarpicola* (Tan & Shivas 2022).

Diaporthe annonacearum (Bond.-Mont.) Rossman & Udayanga, IMA Fungus 6(1): 150 (2015)

Typification details – N/A
Hosts – *Annona cherimolia, A. squamosa* (Annonaceae)
Distribution – Asia (China), North America (USA), Oceania (Australia), Russia
Notes – *Diaporthe annonacearum* was introduced by Rossman & Udayanga in Rossman et al. (2015) as the species epithet for *Phomopsis annonacearum*. This fungus has been reported as the causative agent of the marginal leaf scorch of sugar apple (*Annona squamosa*) and barbadine (*Passiflora quadrangularis*) in Australia. Furthermore, *Diaporthe annonacearum* causes purple fruit lesions at the apical end of sugar apple fruits and later lesions become hard and cracked with internal necrosis (Cardi 1994). The morphological description and illustration of the asexual morph were described by Bondarzeva-Monteverde et al. (1936). However, the sexual morph has not been reported. Sequence data is not available for this species.
Diaporthe annona Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 360 (1909)

Typification details – Holotype, LPS, Spegazzini, Apr. 1906
Host – *Annona cherimolia* (Annonaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe annona* was reported by Spegazzini (1909), on dead branches of *Annona cherimolia* in Tucumán, Argentina. The morphology of the sexual morph was described and illustrated in the original publication, with fusoid ascii, 45–50 × 8 µm, aparaphysate, cylindrical to subfusoid, 1-septate and constricted, with 4 oil globules, hyaline ascospores, 12–13 × 3 µm (Spegazzini 1909). The asexual morph was not reported. Sequence data is not available for this species.

Diaporthe aorista Ellis & Everh., Bull. Torrey bot. Club 24: 132 (1897)

Typification details – Holotype, NY, Ellis & Everhart, Jul. 1896
Host – *Solidago* sp. (Asteraceae)
Distribution – North America (USA)
Notes – *Diaporthe aorista* was reported by Ellis & Everhart (1897a), on dead stems of *Solidago* sp. in New Jersey, USA. The morphology of the sexual morph was described and illustrated in the original publication, often 2–3 subconfluent, without any black circumscribing line, oblong to cylindrical ascii, 35–45 × 8 µm, with oblong, 1-septate, slightly constricted, with 2–4-guttules, hyaline ascospores, 11–13 × 4–4.5 µm (Ellis & Everhart 1897a). The asexual morph was not reported. Sequence data is not available for this species.

Typification details – Holotype, HMAS 245777; ex-type, CGMCC 3.17533 = LC3418
Hosts – *Camellia sinensis* (Theaceae), *C. grandis* cv. Tomentosa (Rutaceae), *Rhus chinensis* (Anacardiaceae)
Distribution – Asia (China)
Notes – *Diaporthe apiculata (= D. apiculatum)* was originally described by Gao et al. (2016) as an endophyte and pathogenic on *Camellia sinensis* in China. The species was described and illustrated from its asexual morph (Gao et al. 2016). The species was also found as endophytic on *C. grandis* cv. Tomentosa twigs in China (Dong et al. 2021a). *Diaporthe apiculata* has apiculate or fusiform, 2-guttules, rarely 3-guttules alpha conidia 6.5–10 × 2–3 µm, and filiform, hamate or curved beta conidia, 25–39 × 1–1.5 µm. Detailed descriptions and illustrations of the asexual morph of *D. apiculata* were given by Gao et al. (2016).

In the phylogenetic tree of Norphandhoun et al. (2022, Fig. 1), *Diaporthe apiculata (= D. apiculatum)* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Diaporthe apocrypta (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 621 (1882)
≡ *Valsa apocrypta* Cooke & Ellis, Grevillea 8(no. 41): 15 (1878)
Typification details – Holotype, Ellis 3099
Host – *Carya tomentosa* (Juglandaceae)
Distribution – North America (USA)
Notes – *Diaporthe apocrypta* was reported by Saccardo (1882a), from branches of *Carya tomentosa* in New Jersey, USA. The morphology of sexual morph was described and illustrated in the original publication, with clavate ascii, and elongate to elliptical, 1-septate, hyaline ascospores, 25–28 × 8–9 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, IFRD 021-018; ex-type, IFRDCC 3051
Hosts – *Citrus grandis* cv. Tomentosa (Rutaceae), unidentified substrate submerged in a ditch
Distribution – Asia (China)
Notes – *Diaporthe aquatica* was reported by Hu et al. (2012) from an unidentified substrate submerged in a ditch in China. Dong et al. (2021a) reported this species as endophytic on *Citrus grandis* cv. Tomentosa. The species is characterized by broad cylindrical to obclavate appedicellate asci, with a minute apical ring, 35–46 × 5–9 µm, and ellipsoidal to fusiform, 1-septate, slightly constricted at the septum, 4 small globules ascospores, 10–12 × 3–4 µm (Hu et al. 2012). The asexual morph produced ellipsoidal to fusiform, 2–5-guttules alpha conidia, 6–8 µm × 2–3 µm, and filiform, curved at one end, aseptate beta conidia, 6–43 µm × 1–2 µm (Dong et al. 2021a). The detailed morphological characters of sexual and asexual morphs were described and illustrated by Hu et al. (2012) and Dong et al. (2021a), respectively.

Diaporthe aquatica only has the ITS sequence from its holotype material (IFRDCC 3051). Based on the ITS gene tree of Norphanphoun et al. (2022, Fig. 3), this species clustered within the *D. varians* species complex and is sister to *D. bauhiniae* with high bootstrap support (100% ML). However, the ITS sequence of the non-type strain (IFRDCC 3015) is sister to *D. longispora* (CBS 194.36) which is a member of *D. sojae* species complex (Norphanphoun et al. 2022, Fig. 3).

= *Chorostate araliae* (Ellis & Everh.) Traverso, Fl. ital. crypt., Pars 1: Fungi. Pyrenomycetaceae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 199 (1906)

Typification details – Holotype, NY Nuyttall 312

Hosts – *Aralia spinosa* (Araliaceae), *Oplopanax horridum* (Araliaceae)

Distribution – Europe (Georgia), North America (USA)

Notes – *Diaporthe araliae* was reported by Ellis & Everhart (1894), on dead branches of *Aralia spinosa* in West Virginia, USA. The sexual morph was described and illustrated in the original publication with clavate to cylindrical asci, 40–45 × 5–6 µm, paraphyses, oblong, 1-septate, slightly constricted, with 4-guttules, hyaline ascospores, 12–13 × 2.5–3 µm (Ellis & Everhart 1894). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe araliae-chinensis S.Y. Wang, Yong Wang bis & Y. Li, in Hyde et al., Mycosphere 14(1): 663–744 (2023)

Typification details – Holotype, HGUP 412, GUCC 412.7

Hosts – *Aralia chinensis* (Araliaceae)

Distribution – Asia (China)

Notes – *Diaporthe araliae-chinensis* was introduced by Hyde et al. (2023) based on morphological characteristics, phylogenetic analysis, nucleotide polymorphism comparison and pairwise homology test. The species was found on leaves of *Aralia chinensis* in Guizhou Province, China. In a phylogenetic tree (Hyde et al. 2023), this species is closely related to the type strain of *D. lithocarpi* (CGMCC 3.15175) within the *D. arecæ* species complex. Morphologically, conidiomata of *D. araliae-chinensis* are larger than those of *D. lithocarpi* (1,000 µm vs. 120–270 µm diam.) (Gao et al. 2014, Hyde et al. 2023). The conidiogenous cells and alpha conidia of *D. araliae-chinensis* are also longer than those of *D. lithocarpi*. Moreover, *D. araliae-chinensis* did not form beta conidia, whereas *D. lithocarpi* produced beta conidia (Gao et al. 2014, Hyde et al. 2023). A detailed description of *D. araliae-chinensis* was provided in Hyde et al. (2023).

Typification details – Holotype, RGM 2546; ex-type, CBS 145285

Host – *Araucaria araucana* (Araucariaceae)

Distribution – South America (Chile)

Notes – *Diaporthe araucanorum* was introduced by Zapata et al. (2020). The species was found from the branches of *Araucaria araucana* in Curanilahue, Chile (Zapata et al. 2020). It produced solitary, globose to subglobose, unilocular pycnidial conidiomata on pine needles on WA, with rarely ramificate, 1–2 septate, hyaline conidiophores, phialidic, cylindrical, hyaline...
conidiogenous cells, produced fusiform, aseptate, mainly 2-guttules, hyaline alpha conidia, and filiform, straight or curved, aseptate, eguttulate, hyaline beta conidia, gamma conidia and paraphyses not observed. Detailed descriptions and illustrations of the asexual morph for this species were given by Zapata et al. (2020). The sexual morph was not observed.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe araucanorum clustered in the D. rudis species complex.

Diaporthe arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)
- *Diaporthe arctii* f. arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)
- *Diaporthe arctii* f. tanaceti Rehm, Hedwigia 22(3): 39 (1883)
- *Diaporthe arctii* var. arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)
- *Diaporthe arctii* var. artemisiae Rehm, Hedwigia 35(Beiibl.): (148) (1896)
- *Diaporthe discors* Sacc., Michelia 2(no. 6): 60 (1880)
- *Diaporthe discrepans* Sacc., Michelia 2(no. 8): 568 (1882)
- *Diaporthe inquilina* Nitschke, Pyrenomyc. Germ. 2: 272 (1870)
- *Diaporthe inquilina* subsp. inquilina Nitschke, Pyrenomyc. Germ. 2: 272 (1870)
- *Diaporthe inquilina* subsp. uliginosa Sacc., Syll. fung. (Abellini) 1: 650 (1882)
- *Diaporthe labiatae* (Cooke) Sacc., Syll. fung. (Abellini) 1: 656 (1882)
- *Diaporthe rumicis* Nitschke ex Plowr., Grevillea 8(no. 47): 107 (1880)
- *Diaporthe uliginosa* (Sacc.) Sacc., Syll. fung. (Abellini) 12: 191 (1897)
- *Phoma arctii* (Lasch) Sacc., Michelia 2(no. 7): 340 (1881)
- *Phomopsis arctii* (Lasch) Traverso, Fl. ital. crypt. (Florence) 2(1): 226 (1906)
- *Sphaeria inquilina* Wallr., Fl. crypt. Germ. (Norimbergae) 2: 779 (1833)
- *Sphaeria labiatae* Cooke, Grevillea 5(no. 34): 63 (1876)
- *Sphaeria arctii* Lasch, in Rabenhorst, Klotzschii Herb. Viv. Mycol. 11: no. 1046 (1846)

Typification details – Lectotype, MBT200092; epitype, BPI 843598; ex-epitype, CBS 139280

sativa (Apiaceae), Phaseolus vulgaris (Fabaceae), Phleum pratense (Poaceae), Phlomis purpurea (Lamiaceae), Phytolacca americana, P. decandra, Phytolacca sp. (Phytolaccaceae), Platanus occidentalis (Platanaceae), Polygonum pensylvanicum, P. sagittatum, Polygonum sp. (Polygonaceae), Polyommia canadensis (Asteraceae), Py cynanthes pycnanthemoi des (Lamiaceae), Ricinus communis (Euphorbiaceae), Rudbeckia laciniata (Asteraceae), Rumex alpinus, Rumex crispus (Polygonaceae), Scolymus hispanicus (Asteraceae), Sempervivum punctatum (Crassulaceae), Senecio aquaticus (Asteraceae), Sesbania exaltata (Fabaceae), Silphium dentatum, S. lapsuum, Silphium sp. (Asteraceae), Smallanthus uvedalii (Asteraceae), Solanum melongena, S. melongena var. esculentum (Solanaceae), Solidago conferta, S. virga-aur e (Asteraceae), Sonchus oleraceus (Asteraceae), Tanacetum vulgare (Asteraceae), Trachycarpus fortunei (Arecaceae), Urtica morfolia (Urticaceae), Vernonia acaulis, V. noveboracensis (Asteraceae), Xanthium saccharatum, X. strumarium var. canadense (Asteraceae), Yucca filamentosa (Asparagaceae)

Distribution – Asia (India, Japan), Europe (Austria, Czech Republic, Denmark, England, France, Georgia, Germany, Hungary, Ireland, Poland, Portugal, Scotland, Switzerland, The Netherlands, United Kingdom, Yugoslavia), North America (Canada, Canary Islands, USA), Russia

Notes – Diaporthe arctii was reported by Nitschke (1870) from the stem of Arctium lappa in Germany. Diaporthe arctii is a fungal plant pathogen that causes canker disease and has been found especially on dead herbaceous stems of Asteraceae. The species was described and illustrated for its sexual morph (Nitschke 1870, Saccardo 1882a, Wehmeyer 1933a, Muntanola-Cvetkovic et al. 1996), and asexual morph (Udayanga et al. 2015, Abeywickrama et al. 2022).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe arctii clustered in the D. sojae species complex.

Typification details – Isotype, CBS H-7808; ex-isotype, CBS 161.64

Hosts – Areca catechu (Arecaceae), Citrus grandis, C. grandis cv. Tomentosa. C. limon, C. reticulata, C. sinensis, Citrus sp., C. unshiu (Rutaceae), Hylocereus polyrhizus (Cactaceae), Kandelia obovata (Rhizophoraceae), Mangifera indica (Anacardiaceae), Persea americana (Lauraceae), Sargassum sp. (Sargassaceae)

Distribution – Asia (China, India, Malaysia, South Korea), South America (Suriname)

Notes – Diaporthe arecae was introduced by Gomes et al. (2013), it was found on the fruit of Areca catechu in India. The species is widely distributed on a wide range of hosts (Gomes et al. 2013). The morphology of the asexual morph of this species was described and illustrated by Huang et al. (2021a). The pathogenicity test confirmed the species as a pathogenic fungus causing stem-end rot of mango (Lim et al. 2019) and stem gray blight of Hylocereus polyrhizus (Huda-Shakirah et al. 2021). Chang et al. (2019) reported a new indoleglycerol, designated as arecine (1), and twenty-three known diketopiperazines 2–24 which were isolated from the endophytic fungus D. arecae on mangrove.

In the phylogenetic tree of Norphanphoun et al. (2022, Figs 1–3), Diaporthe arecae clustered in the D. arecae species complex.

Typification details – Holotype, CBS H-21104; ex-type, CBS 114979 = HKUCC 5527

Host – Arenga engleri (Arecaceae), Calamus castaneus (Arecaceae)

Distribution – Asia (China, Malaysia)

Notes – Diaporthe arengae was reported by Gomes et al. (2013). The species was found from Arenga engleri in Victoria Peak, Hong Kong, China. The species produced pycnidia on PNA, with fusoid to ellipsoid, aseptate alpha conidia, and subcylindrical, aseptate, curved beta conidia and
gamma conidia were not observed. The morphology of the asexual morph was described and illustrated in the original publication (Gomes et al. 2013). The sexual morph was not reported.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe arengae* clustered in the *D. arecae* species complex.

Diaporthe arezzoensis W.J. Li, Camporesi & K.D. Hyde, Fungal Diversity 100: 472 (2020)
Typification details – Holotype, MFLU 19-2880; ex-type, MFLUCC 15-0127 = ICMP 21837 = KUMCC 15-0581
Host – *Cytisus* sp. (Fabaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe arezzoensis* was introduced by Li et al. (2020), a saprobic fungus which was isolated from dead stems of *Cytisus* sp. in Arezzo, Italy (Li et al. 2020). The species has solitary, globose to subglobose pycnidial conidiomata, unilocular, multilocular or convoluted, circular ostiole, conidiophores reduced to conidiogenous cells, enteroblastic, phialidic, subcylindrical, determinate, unbranched conidiogenous cells, with fusiform to oblong, aseptate, eguttulate, hyaline alpha conidia, and filiform, acute at both ends, straight or more often hamate, aseptate, eguttulate, hyaline beta conidia. Detailed descriptions and illustrations of the asexual morph of *D. arezzoensis* were given by Li et al. (2020). In the phylogeny, *D. arezzoensis* formed a separated branch (Li et al. 2020). Moreover, *D. arezzoensis* is distinguished from other species of *Diaporthe* by its larger, wider, and thick-walled alpha conidia (Li et al. 2020). The sexual morph is undetermined.

Diaporthe asclepiadis Ellis & Everh., Bull. Torrey bot. Club 10(9): 98 (1883)
Typification details – Holotype, NY, Ellis & Everhart s.n.
Host – *Asclepias tuberosa* (Apocynaceae)
Distribution – North America (USA)
Notes – *Diaporthe asclepiadis* was reported by Ellis & Everhart (1883). The species was found on dead stems of *Asclepias tuberosa* in New Jersey, USA. It is characterized by stromata with black circumscribing line, globose perithecia, cylindrical (rather stout) ostiole, with 35–40 × 9 µm asci, and elliptical, 1-septate, constricted in the middle, 3–4-nucleate spores, 10–12 × 3–4 µm. Detailed descriptions and illustrations of the sexual morph were given in Ellis & Everhart (1883). The asexual morph was not reported. Sequence data is not available for this species.

Typification details – Holotype, MFLU 13-0256; ex-type, MFLUCC 12–0299a
Host – Isolated from unknown dead leaves.
Distribution – Asia (Thailand)
Notes – *Diaporthe aseana* was reported by Hyde et al. (2016). The species was isolated from unknown dead leaves in Thailand. The species is characterized by conidiomata pycnidial, unilocular, black, erumpent, ostiolate, produced fusoid to ellipsoid, aseptate, guttules, hyaline alpha conidia, 6–9 × 2–3 µm, beta conidia not observed. Detailed descriptions and illustrations of the asexual morph were given by Hyde et al. (2016). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe aseana* clustered in the *D. arecae* species complex.

Typification details – Holotype, CBS H-21513; ex-type, CBS 136967 = CPC 16508
Host – *Vaccinium ashei* (Ericaceae)
Distribution – South America (Chili)
Notes – *Diaporthe asheicola* was introduced by Lombard & Crous in Lombard et al. (2014) based on phylogenetic analysis. The species was found on *Vaccinium ashei* in Chile. The
morphology of this species was not described as it did not sporulate on any media (Lombard et al. 2014).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe asheicola* clustered in the *D. rudis* species complex.

Typification details – Holotype, GAM 12888; ex-type, CBS 117169 = CPC 542

Hosts – *Acer truncatum* (Sapindaceae), *Aspalathus linearis*, *Glycine max* (Fabaceae), *Hylocereus polyrhizus* (Cactaceae)

Distribution – Africa (Ghana, South Africa), Asia (China), North America (USA), South America (Argentina, Brazil, Paraguay)

Notes – *Diaporthe aspalathi* was introduced by Rensburg et al. (2006). The combined ITS and *tef1*-α gene analysis in Rensburg et al. (2006) showed that *D. phaseolorum* var. *meridionalis*, which was described as causative agent of soybean stem canker in the Southeastern USA (Fernández & Hanlin 1996), is not closely related to *D. phaseolorum*. *Diaporthe phaseolorum* var. *meridionalis* was the main causal pathogen of canker and die-back of rooibos. However, *D. phaseolorum* was not reported as the causative agent of this disease (Smit & Knox-Davies 1989a, b). Further, Rensburg et al. (2006) showed *D. phaseolorum* var. *meridionalis* clustered with *D. aspalathi*. Thus, they proposed that *D. phaseolorum* var. *meridionalis* should be treated at the species level along with the red bush die-back causal agent, *D. aspalathi* based on nucleotide sequence data, cultural, phytopathological and morphological evidence. Guillin et al. (2014) confirmed that *Diaporthe phaseolorum* var. *meridionalis* and *D. aspalathi* are the same species based on species delimitation assays. The species is the causative agent of the southern stem canker (SSC) disease in soybean (Li et al. 2016). The morphology of the asexual morph was described and illustrated in original and previous publications whose virulence in soybean has been demonstrated by pathogenicity tests (Rensburg et al. 2006, Brumer et al. 2018, Ghimire et al. 2019). Pathogenicity test confirmed the species as the main causal organism of canker and die-back of rooibos (*Aspalathus linearis*) (Rensburg et al. 2006).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe aspalathi* clustered within the clade containing type strain of *D. crotalariae* and non-type strain of *D. woodii* with 84% bootstrap support. This clade is sister to the clade containing other genera of Diaportheae with 63% bootstrap support. Therefore, we keep *D. aspalathi* as a singleton species.

Diaporthe asphodeli Sacc., Michelia 2(no. 6): 59 (1880)

Typification details – N/A

Host – *Asphodelus albus* (Asphodelaceae)

Distribution – Europe (France)

Notes – *Diaporthe asphodeli* was reported by Saccardo (1880) from *Asphodelus albus* in France. The species is characterized by clavate asci, 70–80 × 8 μm, paraphyses, and fusoid, 1-septate, slightly constricted, 4-guttules, hyaline ascospores, 14–15 × 4–5 μm. Detailed descriptions and illustrations of the sexual morph for this species were given by Saccardo (1880). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe asteriscina Speg., Revta Fac. Agron. Vet. Univ. nac. La Plata, Ser. 2 6(1): 63 (1910)

Typification details – Holotype, LPS 2471

Host – *Asteriscium chilense* (Apiaceae)

Distribution – South America (Chile)

Notes – *Diaporthe asteriscina* was reported by Spegazzini (1910) from stems of *Asteriscium chilense* in Biobío, Chile. The morphology of sexual morph was described in the original publication, with immersed ascomata, 90–110 μm wide, biseriate, slightly constricted at the sepa
ascospores, 50 × 10 μm. *Diaporthe asteriscina* is only known from its holotype (Spegazzini 1910). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A (reference specimen at MU000285752)

Hosts – *Corylus avellana* (Betulaceae), *Prunus* sp. (Rosaceae)

Distribution – Europe (Hungary), North America (USA)

Notes – This is a stromatic *Diaporthe* species found from stems of *Corylus avellana* in Hungary. The species has ascomata disseminated, 2–10 perithecia in a group, and semi-immersed in stromatic tissues, hemispherical perithecia, with a long neck, clavate asci, containing fusiform to oval, 2-celled ascospores, 12–16 × 1–2 μm. In addition to the holotype specimen, this species has also been collected in the USA (Hazslinsky 1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe atlantica Toghueo, Vázquez de Aldana & Zabalgogeazcoa, Frontiers in Microbiology 14(no. 1105299): 5 (2023)

Typification details – Holotype, CECT 21217

Host – *Festuca pruinosa*, *Festuca rubra* subsp. *pruinosa* (Poaceae)

Distribution – Europe (Spain)

Notes – *Diaporthe atlantica* was introduced by Toghueo et al. (2023). The species was isolated as an endophyte from surface-disinfected roots of *Festuca pruinosa*. Phylogenetically, *D. atlantica* is closely related to *D. sclerotioide* and *D. columnaris* which are known as pathogens of cucurbits (Shishido et al. 2014) and lingonberry (Farr et al. 2002), respectively. Although *D. atlantica* cannot be differentiated from *D. sclerotioide* based on morphology, it is phylogenetically distinct. *Diaporthe atlantica* differs from *D. columnaris* by the size of alpha conidia, and the shape and size of conidiogenous cells (Farr et al. 2002, Toghueo 2023). Toghueo (2023) tested the pathogenicity of *D. atlantica* strain EB4 in cucumber, melon, and watermelon plants, and concluded that the species did not cause root necrosis or seedling wilt (Shishido et al. 2014), but shoot and root growth was delayed in the three-plant species. Pereira et al. (2023) reported that *D. atlantica* strain EB4 could play a positive role in the modulation of tomato plant responses to drought stress by improving photosynthesis, nutrient uptake and enzymatic antioxidant response.

Diaporthe atropuncta Peck, Bull. N.Y. St. Mus. 131: 20 (1909)

Typification details – Holotype, C.L. Shear’s collection

Host – *Tilia americana* (Malvaceae)

Distribution – North America (USA)

Notes – *Diaporthe atropuncta* is a nonstromatic species, with 3–6 perithecia clustered immersed in bark tissues in valsoid configuration. This species is easily recognized by the absence of black line or stromatic tissues, oblong to subcylindrical asci, 100–120 × 10–12 μm, and 1-septate, hyaline ascospores, 25–35 × 7–8 μm (Peck 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe aucubae Sacc., Michelia 1(no. 4): 390 (1878)

= *Phoma aucubae* f. *ramulicola* Sacc., Syll. fung. (Abellini) 3: 115 (1884)

= *Phomopsis aucubae* (Westend.) Traverso, Fl. ital. crypt. (Florence) 2(1): 243 (1906)

= *Phomopsis aucubae* f. *ramulicola* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 243 (1906)

Typification details – Holotype, PAD, Spegazzini, Jan. 1877
Hosts – *Aucuba japonica*, *Aucuba* sp. (Garryaceae), *Toricellia angulata* var. *intermedia* (Toricelliaceae)

Distribution – Asia (China, Japan), Europe (Ukraine, United Kingdom), North America (USA: North Carolina)

Notes – *Diaporthe australiensis* was found on dead branches of *Aucuba japonica* in Italy. The sexual morph description of this species was provided in the original publication (Saccardo 1878), with ascomata erumpent in the bark, forming black line along the wood surface and depth; globose perithecia, gregarious, immersed in wood, ostiole barely emerging, 8-spored, fusoid asci, 45–48 × 7–8 μm, ap paraphysate, oblong to fusoid, constricted, 1-septate, 4-guttules, hyaline ascospores, 14–16 × 3–3.5 μm. Sequence data is unavailable for this species.

Typification details – Holotype, PREM 56458; ex-type, STE-U 2655, CBS 113487

Hosts – *Corylus avellana* (Betulaceae), *Juglans regia* (Juglandaceae), *Prunus dulcis* (Rosaceae), *Vaccinium corymbosum* (Ericaceae), *Vitis vinifera* (Vitaceae)

Distribution – Africa, North America (US, CA), Oceania (Australia), South America (Chile)

Notes – *Diaporthe australafraicana* causes the stem cankers of blueberry (*Vaccinium corymbosum*) with symptoms of apical necrosis on the shoots and brown-to-reddish necrotic lesions on the stems (Niekerk et al. 2005, Espinoza et al. 2009). The species has globose, solitary, scattered to aggregated ascomata, with reddish brown tipped and sparse external hyphae, 8-spored, cylindrical to clavate ascis, with refractive apical ring, biseriate ascospores. The asexual morph on cultures produced fusoid, obtuse ends, unicellular, 2-guttules to eguttules, hyaline alpha conidia, 6.4–7.9 × 2.3–3.3 μm. Beta and gamma conidia are absent.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe australafraicana* clustered in the *D. rudis* species complex.

Typification details – Holotype, BRIP 66145; ex-type, CBS 146457

Host – *Macadamia* sp. (Proteaceae)

Distribution – Oceania (Australia)

Notes – *Diaporthe australiana* was isolated from husk rot of *Macadamia* sp. in New South Wales, Australia (Wrona et al. 2020). This species is characterized by pycnidial conidiomata on OMA, without necks, conidiophores with an irregularly polygonal basal cell from which 1 or 2 conidiogenous cells arise, phialidic, cylindrical, straight or flexuous conidiogenous cells, paraphyses, produced fusiform, acute at both ends, aseptate, guttules, hyaline alpha conidia, beta conidia not observed. Detailed descriptions and illustrations of this species were given by Wrona et al. (2020). Pathogenicity assays found that *D. australiana* can cause Phomopsis husk rot in macadamia (Wrona et al. 2020).

The phylogenetic tree of Wrona et al. (2020) revealed that *Diaporthe australiana* is closely related to *D. hongkongensis* and *D. lithocarpi*. Morphologically, *D. australiana* differs from *D. hongkongensis* by its longer conidiogenous cells (10–20 μm vs. 5–12 μm), more tapered paraphyses (1–2 μm vs. 2–8 μm wide), and narrower alpha conidia (1.5–2 vs. 2–3 μm) (Gomes et al. 2013, Wrona et al. 2020).

Diaporthe australis Sacc. & Speg., Michelia 1(no. 1): 29 (1877)

Typification details – N/A

Host – *Celtis australis* (Cannabaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe australis* was established by Saccardo (1877). This species is a saprobic collected when associated with twigs (Saccardo 1877). It is a non-stromatic with globose ascomata, immersed completely or partially in bark, surrounded by a black line, with 8-spored, fusoid asci.
50–60 × 7–10 μm, and fusoid, 1(–3)-septate, constricted at the septa, 4-guttules ascospores, 14–16 × 3.5–5 μm (Saccardo 1877). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 60163d
Host – *Amaranthus blitum* (Amaranthaceae)
Distribution – Oceania (Australia)
Notes – The species was introduced by Tan & Shivas (2022) based on molecular data. It was found from stems of *Amaranthus blitum* in Norfolk Island, Australia. In the phylogenetic tree based on ITS, tub2, and tefl-α sequences, *D. australpacifica* was sister to the clade containing *D. caryae*, *D. machili*, *D. orixae*, and *D. sackstonii* with 100% ML and 1.0 PP support (Tan & Shivas 2022).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe caryae* and *D. sackstonii* clustered in the *D. sojae* species complex. Therefore, it is likely that *D. australpacifica* belongs to this species complex. However, further studies are needed to confirm this.

Diaporthe austroamericana Speg., Anales de la Sociedad Científica Argentina 9 (4): 181 (1880)

Typification details – Holotype, Spegazzini, Mar. 1880
Hosts – *Jussiaea longifolia* (Onagraceae), *Carpinus caroliniana* (Betulaceae)
Distribution – North America (Canada, USA)
Notes – *Diaporthe austroamericana* is a stromatic species and there is a black line around stromatic tissues. However, stromatic tissues only spread around papilla and the base of the papilla is immersed in bark tissues. The species has aggregated, globose perithecia, 8-spored, fusoid asci, 65 × 10 μm, 1-septate, not constricted at the septa, 4-guttules ascospores, 14–15 × 5–6 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, SCHM 3605
Host – *Averrhoa carambola* (Oxalidaceae)
Distribution – Asia (China)
Notes – The species was recombined from *Phomopsis averrhoae*, which was found on living branches of *Averrhoa carambola*. The species has conidiomata of eustroma, erumpent after maturing, fusiform, unicellular alpha conidia, with 2 obvious oil drops, 6–8.4 × 1.4–1.8 μm, and filiform, unicellular beta conidia, mostly hamate, 10–25.5 × 0.5–0.9 μm. A detailed description and drawing of the asexual morph are available in Chang et al. (2005a). *Diaporthe averrhoae* only comprises a single ITS sequence from its holotype material.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), the type sequence of *Diaporthe averrhoae* formed a distinct clade sister to *D. arengae* and *D. pseudomangiferae*. However, the bootstrap value is low, and more sequence data are needed to confirm the placement of this species.

Diaporthe azadirachtae Udayanga & Castl., IMA Fungus 7(2): 291 (2016)

Typification details – Holotype, HClO 42119; isotype, MUBH 983
Host – *Azadirachta indica* (Meliaceae)
Distribution – Asia (India)
Notes – *Diaporthe azadirachtae* was invalidly introduced by Sateesh et al. (1997) and later was validated by Rossman et al. (2016). This species causes serious twig blight disease on
Azadirachta indica (Meliaceae) which has important chemical properties such as strong antioxidant, pest repellent, and use in hair and dental products (Sateesh et al. 1997, Girish & Shankara Bhat 2008, Prasad et al. 2010). This species is characterized by semi-immersed, ampuliform to subglobe conidiomata, simple to branched, septate, filiform conidiophores, fusiform, 2–4-guttules alpha conidia, 4.8–11.2×1.6–3.2 μm, and filiform, aseptate, hamate, eguttules beta conidia, 16–25.6 × 1.6–2 μm (Sateesh et al. 1997). The sexual morph is undetermined. Pathogenicity test was done for this species in Girish & Shankara Bhat (2008) as fungal causes serious twig blight disease on *Azadirachta indica* (Meliaceae), neem, and has widely been reported in phytopathological literature (Sateesh et al. 1997, Girish & Shankara Bhat 2008, Prasad et al. 2010).

Diaporthe azadirachtae only comprises a single ITS sequence. This species formed a distinct, independent lineage sister to *D. sennicola* in the phylogenetic tree of Norphanphoun et al. (2022, Fig. 3).

Typification details – N/A
Hosts – *Carpinus caroliniana* (Betulaceae), *Jussiaea scabra* (Onagraceae)
Distribution – North America (Canada, USA)
Notes – This is a saprobic *Diaporthe* species collected as a bark-inhabiting species. *Diaporthe bakeri* produced stromatic tissues and perithecia immersed in stromata and fusiform ascospores (Wehmeyer 1933a). Sequence data is not available for this species.

Diaporthe baptisiae Rehm, Annls mycol. 6(4): 313 (1908)

Typification details – Holotype, Ellis s.n.
Host – *Baptisia tinctoria* (Fabaceae)
Distribution – North America (USA)
Notes – In the holotype material, *Diaporthe baptisiae* was reported together with *D. arctii* (Rehm 1908). However, the fungicolous nature of this species has not been confirmed. *Diaporthe baptisiae* forms perithecia in pseudostromatic tissues, globose, immersed perithecia, with long cylindrical papilla, 4-spored, fusiform asci, 40–45 × 6–9 μm, ellipsoid to fusiform, uniseptate, hyaline ascospores, 10–12 × 3–5 μm. The asexual morph is undetermined. There are no reports of the pathogenicity of this species (Rehm 1908). Sequence data is not available for this species.

Diaporthe bauhiniae C.M. Tian & Q. Yang, in Yang, Jiang & Tian, MycoKeys 77: 51 (2021)

Typification details – Holotype, BJFC-S1621; ex-type, CFCC 53071
Host – *Bauhinia purpurea* (Fabaceae)
Distribution – Asia (China)
Notes – *Diaporthe bauhiniae* was introduced by Yang et al. (2021a). It was found on branches of *Bauhinia purpurea* in Jiangxi, China. Phylogenetically, this species was closely related to *D. psoraleae-pinnatae* (Yang et al. 2021a). However, *D. bauhiniae* is different from *D. psoraleae-pinnatae* in having narrower alpha conidia (2–2.5 vs. 2.5–3 μm) and beta conidia were not observed in *D. psoraleae-pinnatae* (Crous et al. 2013, Yang et al. 2021a).

Typification details – Holotype, BRIP 59326a
Host – *Psidium guajava* (Myrtaceae)
Distribution – Oceania (Australia)
Notes – The species was introduced by Tan & Shivas (2022) based on molecular data. It was found from leaf spots on *Psidium guajava* in Norfolk Island, Australia. Based on the phylogenetic tree constructed using ITS, tub2, and tef1-a sequences in Tan & Shivas (2022), *D. beasleyi* was
sister to *D. vawdreyi* which is a member of *D. vawdreyi* species complex in Norphanphoun et al. (2022, Fig. 1).

Diaporthe beckhausii Nitschke, Pyrenomyc. Germ. 2: 295 (1870)

= *Lophioforma beckhausii* Nitschke, Syst. Bearb. Pyr. Loph.: 64 (1886)

424 (1886)

Typification details – N/A

Hosts – *Cytisus sagittalis* (Fabaceae), *Betula* sp. (Betulaceae), *Cydonia japonica* (Rosaceae), *Elaeagnus angustifolia* (Elaeagnaceae), *Halesia* sp. (Styracaceae), *Menispermum canadense*, *Menispermum* sp. (Menispermaceae), *Viburnum opulus*, *V. tinus*, *Viburnum* sp. (Adoxaceae)

Distribution – Europe (Czech Republic Denmark, Germany, Poland, Sweden, Ukraine, United Kingdom), North America, (Canada, USA)

Notes – *Diaporthe beckhausii* was introduced by Nitschke (1870). It is morphologically distinguished by its stromatic tissues surrounded by a black line, aggregated, globose to depressed perithecia immersed in stromatic tissues, with oblong to subcylindrical asci, 45–56 × 6–7 μm, and subcylindrical, 1-septate, 4-guttules ascospores, 10–14 × 3–4 μm. There are sterile tissues and beta conidia 10–12 × 0.75–1 μm (Nitschke 1870).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe beckhausii* clustered in the *D. rudis* species complex.

Typification details – Holotype, VPRI 16602; isotype, BRIP 54792

Host – *Indigofera australis* (Fabaceae)

Distribution – Oceania (Australia)

Notes – *Diaporthe beilharziae* was found from leaves of *Indigofera australis* in Australia. This species has solitary pycnidial conidiomata, scattered and aggregated in small groups, conidiophores reduced to conidiogenous cells, or ampulliform to cylindrical, 1-septate, hyaline to pale yellowish-brown conidiophores, containing cylindrical to flexuous conidiogenous cells, produced abundant, oval to cylindrical, rounded at the apex, obconically truncate at base, mostly 2-guttules, hyaline alpha conidia, and flexuous, hyaline beta conidia, scarce amongst the alpha conidia. Although *D. beilharziae* was isolated from a leaf spot on *Indigofera australis*, its pathogenicity remains unknown (Gomes et al. 2013, Tan et al. 2013).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe beilharziae* clustered in the *D. sojae* species complex.

Typification details – Holotype, ATCC MYA-4970; ex-type, BPI 89319

Host – *Salix* sp. (Salicaceae)

Distribution – North America (Canada, USA)

Notes – This is a pathogenic species on the grapevine and *Salix* species. The species produced subglobose pycnidial, erumpent, mostly solitary, sometimes aggregated conidiomata, with cylindrical, hyaline conidiogenous cells, and abundant, oval to elliptical, truncate at the base, aseptate, hyaline, mostly multi-guttules alpha conidia, and copious, curved to slightly curved, cylindrical, aseptate, hyaline, truncate at basal end gamma conidia, while beta conidia not observed. A detailed description of the asexual morph is available in Lawrence et al. (2015). The sexual morph is undetermined. Pathogenicity test confirmed that *D. benedicti* causes canker diseases on grapevine (Lawrence et al. 2015).

In the phylogenetic tree Norphanphoun et al. (2022, Fig. 1), *Diaporthe benedicti* clustered in the *D. rudis* species complex.
Diaporthe berkeleyi (Desm.) Nitschke, Pyrenomyc. Germ. 2: 273 (1870)
≡ *Sphaeria berkeleyi* Desm., Annls Sci. Nat., Bot., sér. 2 8: 358 (1837)
Typification details – N/A
Hosts – *Aethusa cynapium*, Apiaceae sp. (Apiaceae)
Distribution – Europe (France, Gaul Island)
Notes – The species was initially introduced as *Sphaeria berkeleyi* by Montagne (1837) and later synonymized by Nitschke (1870). It was found on the dry stem of an Apiaceae species around Gaul Island. *Diaporthe berkeleyi* is characterized by partially immersed stromata in the wood, globose, slightly compressed, small perithecium, with a very short neck, punciform, slightly prominent, hemispherical to subconical ostiole, and oblong to subcylindrical, sessile asci, 46–50 × 5–6 μm, with fusiform, obtuse on both sides, straight, 1-septate, hyaline ascospores, with 2–4-guttules, 10–11 × 3 μm (Nitschke 1870). Sequence data is not available for this species.

Diaporthe berlesiana Sacc. & Roum., Revue mycol., Toulouse 5(no. 20): 234 (1883)
Typification details – N/A
Hosts – *Rhamnus alnifolia*, *R. frangula* (Rhamnaceae)
Distribution – North America (USA)
Notes – *Diaporthe berlesiana* was found from the cortex stem of *Rhamnus* sp. This species is easily distinguished from other *Diaporthe* species by its entostoma, which is reduced to placodium, gregarious, circinate, globose ascomata, 8-spored, clavate to fusoid asci, 50 × 8 μm, with cylindrical, 1-septate, 4-guttules, hyaline ascospores, 13–17 × 3.3–3.5 μm. The asexual morph is undetermined. This is a saprobic taxon (Saccardo & Roumeguère 1883). Sequence data is not available for this species.

Typification details – Holotype, BJFC-S1333; ex-type, CFCC 51128
Host – *Betula albosinensis* (Betulaceae)
Distribution – Asia (China)
Notes – This species is only known from its holotype and paratype collections and it is pathogenic on twigs and branches of *Betula albosinensis*. It is the cause of birch dieback with typical dieback symptoms. *Diaporthe betulicola* is characterized by pycnidial stromata with a single locule, one ostiole per disc, produced oblong, aseptate, acute at two sides, not 2-guttules, hyaline alpha conidia, 10–15 × 1.5–2.5 μm, and filiform, straight or curved, aseptate, apex acutely rounded, tapering from lower fourth towards the base, eguttules, hyaline beta conidia, 17–24 × 0.5–1.5 μm (Du et al. 2016). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe betulicola* clustered in the *D. carpini* species complex.

Diaporthe biconica (Curr.) Sacc., Syll. fung. (Abellini) 11: 310 (1895)
Typification details – N/A
Host – Unidentified
Distribution – Europe (United Kingdom), North America (USA)
Notes – This species is a saprobic species on unidentified branches (Saccardo 1895). It was introduced as *Sphaeria biconica* by Currey (1859) and later was synonymized under *Diaporthe biconica* by Saccardo (1895). This species has scattered, circinate, ascomata, and 1-septate, constricted ascospores, 28–30 × 8 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, ZJUD62H; ex-type, ZJUD62 = CGMCC 3.17252 = ICMP 20654

Hosts – *Citrus grandis* (Rutaceae), *C. grandis* cv. Tomentosa (Rutaceae), *Fortunella margarita* (Rutaceae), *Sapindus mukorossi* (Sapindaceae)

Distribution – Asia (China)

Notes – *Diaporthe biconispora* was found as an endophyte from different *Citrus* species and *Fortunella margarita*. It was shown to be pathogenic to soapberry causing leaf spots based on pathogenicity test (Si et al. 2020). The species produced abundant, globose to sub-globose, brown to dark brown pycnidia, conidial masses produced as yellow droplets extruding through the ostioles, with cylindrical to subcylindrical, simple, hyaline conidiophores, paraphyses not seen, ellipsoidal to clavate, aseptate, 2- or multi-guttules, hyaline alpha conidia (Huang et al. 2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe biconispora* clustered in the *D. biconispora* species complex.

Diaporthe biglobosa (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 643 (1882)

≡ *Sphaeria biglobosa* Cooke & Ellis, Grevillea 7(no. 41): 9 (1878)

Typification details – N/A

Host – *Sassafras albidum* (Lauraceae)

Distribution – North America (USA)

Notes – The saprobic species was introduced as *Sphaeria biglobosa* by Cooke & Ellis (1878), found on *Sassafras albidum* in the USA. Later, it was synonymized under *Diaporthe biglobosa* by Saccardo (1882a). This species has immersed ascomata, cylindrical asci, uniseriate, ellipsoid, 1-septate, deeply constricted, hyaline ascospores, 14 × 7 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, Spegazzini, Jul. 1911

Host – *Boehmeria candidissima* (Urticaceae)

Distribution – South America (Argentina)

Notes – *Diaporthe boehmeriae* was found on rotten stems of *Boehmeria candidissima* in Argentina (Spegazzini 1912). The species is characterized by immersed, globose ascomata, 8-spored asci, 50 × 8–9 µm, 1-septate, not constricted at first, more or less constricted later, with guttules, hyaline ascospores, 12–14 × 5–6 µm. The asexual morph is undetermined. This is a saprobic species (Spegazzini 1912). Sequence data is not available for this species.

Diaporthe bohemiae Guarnaccia, Eichmeier & Crous, Persoonia 40: 146 (2018)

Typification details – Holotype, CBS H-23236; ex-type, CBS 143347 = CPC 28222

Host – *Vitis* spp. (Vitaceae)

Distribution – Europe (Czech Republic)

Notes – *Diaporthe bohemiae* was collected from the roots of *Vitis* species. Pathogenicity tests have indicated that *D. bohemiae* is not a pathogen as it did not form symptoms in grapevines (Guarnaccia et al. 2018). The species produced pycnidial conidiomata, globose or irregular, solitary, deeply embedded, erumpent, dark brown to black, whitish translucent to yellow conidial drops exuded from the ostioles, cylindrical, straight, 1-septate, hyaline conidiophores, with phialidic, cylindrical, terminal, hyaline conidiogenous cells, paraphyses, and fusiform, aseptate, multi-guttules, acute at both ends, hyaline alpha conidia (Guarnaccia et al. 2018). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe bohemiae* clustered in the *D. carpini* species complex.
Diaporthe bombacis Monkai & S. Lumyong, in Monkai et al., Journal of Fungi 9(6): 11 (2023)

Typification details – Holotype, CMUB39995; ex-type, SDBR-CMU468

Host – *Bombax ceiba* (Bombacaceae)

Distribution – Asia (Thailand)

Notes – The species was introduced by Monkai et al. (2023). It was found on dead wood of *Bombax ceiba* in Chiang Mai, Thailand. Phylogenetically, *D. bombacis* formed a distinct lineage related to *D. eugeniae* within *D. arecae* species complex (Monkai et al. 2023). However, *D. bombacis* can be distinguished from *D. eugeniae* in having longer alpha conidia (6–9.4 × 1.7–3 vs. 6 × 2–3 μm) (Punithalingam 1974a, Monkai et al. 2023). A detailed description and illustration of *D. bombacis* were given by Monkai et al. (2023).

Diaporthe bonafidii Sacc. & P. Syd., Syll. fung. (Abellini) 14(1): 545 (1899)

= *Chorostate bonafidii* (Sacc.) Traverso, Fl. ital. crypt., Pars 1: Fungi. Pyrenomycetaceae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence 1(2): 208 (1906)

Typification details – Holotype, Bonafidio, 1543

Host – *Ulmus major* (Ulmaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe bonafidii* was found from a dead branch of *Ulmus major* in Italy (Saccardo & Sydow 1899a). The species has aggregated, immersed, globose perithecia, ostioles convergent, 8-spored, cylindrical to fusoid asci, 90–100 × 15 μm, oblong to fusoid, 1-septate, not constricted at the septum, 2–4-guttules, hyaline ascospores 24 × 8–9 μm, with appendages on both sides (Saccardo & Sydow 1899a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, UAMH 11634

Host – Human bones

Distribution – North America (USA)

Notes – *Diaporthe bougainvilleicola* was reported as a human pathogenic fungus causing prepatellar bursitis and it causes opportunistic mycoses in bone (Rossman et al. 2015). This species produces triangular, erumpent pycnidia, liberating their conidia in cream-colored “ooze” from the ostiole, with hyaline and of one type conidia, with guttules (Rossman et al. 2015). The sexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A

Host – *Dianthus barbatus* (Caryophyllaceae)

Distribution – Europe (France)

Notes – *Diaporthe brachystoma* was found on twigs of *Dianthus barbatus* in France. This species has aggregated, circularly arranged perithecia covered by a black line, very short ostiole, 8-spored, fusoid asci, without a stalk, 70 × 7 μm, ap paraphysate, oval to fusoid, 4-septate, with 4-guttules, hyaline ascospores, 12 × 3.5 μm. Spermogonia are phomatoidea, with ovate to oblong, 2-guttules, hyaline spermatia, 7 × 3 μm (Primo & Sesta 1983). Sequence data is not available for this species.

Diaporthe brasiliensis R.R. Gomes, Glienke & Crous, Persoonia 31: 17 (2013)

Typification details – Holotype, CBS H-21100; ex-type, CBS 133183 = LGMF924 = CPC 20300

Host – *Aspidosperma tomentosum* (Apocynaceae)
Distribution – South America (Brazil)

Notes – This is an endophytic species isolated from the leaf of *Aspidosperma tomentosum* in Brazil, and its host plant has medicinal properties. Conidiomata in this species are pycnidial, globose to conical, immersed, scattered or aggregated, brown to black, ostiolate. Conidal mass is globose, white to pale-luteous. Conidiophores are hyaline, cylindrical, filiform, straight to curved and 1–3-septate. Conidiogenous cells are hyaline, cylindrical, filiform, and straight to curved, collarette flared, with slight periclinal thickening. Alpha conidia are hyaline, ellipsoid to irregular, apex bluntly rounded, base obtuse to subtruncate, 2- to multi-guttules (Gomes et al. 2013). The sexual morph is undetermined. In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe brasiliensis* clustered in the *D. sojae* species complex.

Diaporthe brenckleana Sacc., Mycologia 12(4): 202 (1920)
Typification details – Holotype, Brenckle 1186
Host – *Cornus stolonifera* (Syn. *Cornus sericea*) (Cornaceae)
Distribution – North America (USA)
Notes – This species was found on branches of *Cornus stolonifera*, in the USA. It is characterized by immersed, aggregated, globose stromata, perithecia immersed in stromatic tissues, erumpent ostiole, 8-spored, fusoid, apex rounded asci, 45–55 × 8–9 μm, with cylindrical to fusoid, 1-septate, 4-guttules, hyaline ascospores, 14 × 3.6 μm (Saccardo 1920). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A
Host – *Salix* sp. (Salicaceae)
Distribution – Europe (France)
Notes – *Diaporthe briardiana* was found from the dead twigs of *Salix* sp., in France. The species has gregarious, globose perithecia, 8-spored, oblong to fusoid asci, 44–52 × 6–8 μm, uniseriate to biseriate, oblong to ellipsoid, 1-septate, 4-guttules, hyaline ascospores, 12–14 × 4 μm (Berlese & Voglino 1886). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, Aug. 1889
Host – *Broussonetia papyrifera* (Moraceae)
Distribution – South America (Argentina)
Notes – *Diaporthe broussonetiae* was found from the dead stem of *Broussonetia papyrifera* in Argentina. This species has widely diffused stromata, gregarious perithecia with 3–5 aggregated groups, immersed perithecia, carbonaceous ostiolate, clavate to fusoid asci, 35–40 × 8–10 μm, aparaphysate, ellipsoid to fusiform, 1-septate, gently constricted, hyaline ascospores, 13–15 × 3–4.5 μm, with appendages (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe buxi Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 150 (1903)
Typification details – N/A
Host – *Buxus sempervirens* (Buxaceae)
Distribution – Europe (Luxembourg)
Notes – This saprobic species is only known from its holotype collection which was found on branches of *Buxus sempervirens*. *Diaporthe buxi* is characterized by immersed perithecia, 8-spored, cylindrical asci, 78–104 × 10 μm, aparaphysate, with oblong, straight or rarely curved, 1-septate, without stalked, 4-guttules, hyaline ascospores, 15–20 × 5–5.5 μm (Feltgen 1903). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, URM 90021; isotype, CBS H-22862; ex-type, URM 7486 = CBS 141542

Hosts – Buchanania axillaris (Anacardiaceae), Tacinga inamoena (Cactaceae)

Distribution – South America (Brazil)

Notes – *Diaporthe caatingaensis* was discovered and isolated as an endophyte from *Tacinga inamoena* by Crous et al. (2016a). The species produced pycnidial conidiomata, solitary or aggregated, dark brown to black, erumpent, globose to subglobose-conical, with long black neck, sometimes hairy at apex, conidial masses hyaline to pale at neck apex, with asepitate, hyaline, smooth, guttules, fusoid to ellipsoid, tapering towards both ends alpha conidia. A detailed description of the asexual morph is available in Crous et al. (2016a). The sexual morph is undetermined. Dhakshinamoorthy et al. (2021) showed that the endophytic fungus *D. caatingaensis* isolated from leaves of *Buchanania axillaris* can produce the bioactive metabolite, Camptothecin (CPT).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe caatingaensis* clustered in the *D. sojae* species complex.

Diaporthe callicarpae Peck, Bull. N.Y. St. Mus. 150: 53 (1911)

Typification details – Holotype, Bartholomew s.n.

Host – Dead stems of *Sambucus callicarpa* (Adoxaceae)

Distribution – North America (USA)

Notes – *Diaporthe callicarpae* was found on dead stems of *Sambucus callicarpa*. The species is characterized by effused, thin stromata, blackening the surface of the wood, with commonly 2–6, depressed-globose, black perithecia, immersed in the wood, minute ostiole, barely emerging from the blackened surface of the wood and rupturing the epidermis, with very slender, narrowed at each end asci, 60–80 × 6–8 µm, and distichous, 4-guttule ascospores, 12–15 × 3–4 µm (Peck 1911). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe camelliae Tassi, Revue mycol., Toulouse 18(no. 72): 158 (1896)

Typification details – N/A

Host – *Camellia japonica* (Theaceae)

Distribution – Europe (Italy: Siena, Tuscany), North America (USA), Oceania (New Zealand)

Notes – *Diaporthe camelliae* was found from the twigs of *Camellia japonica* in Italy. The species is characterized by scattered or subgregarious, globose perithecia, with black line, ostiolate, 8-spored, clavate asci, 50–70 × 9–10 µm, cylindrical to fusoid, 1-septate, constricted at the septum, 4-guttule ascospores, 12–14 × 4–4.5 µm (Tassi 1896a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HSAUP 194.92; ex-type, SAUCC194.92

Host – *Camellia sinensis* (Theaceae)

Distribution – Asia (China)

Notes – The species was introduced by Sun et al. (2021). It was found on the leaves of *Camellia sinensis* in Yunnan, China. Phylogenetic analyses based on a combined dataset of ITS, *tub* and *tef1*-α loci (Sun et al. 2021), *Diaporthe camelliae-sinensis* was closely related to *D. macintoshii* and *D. vangueriae*. Morphologically, *D. camelliae-sinensis* differs from *D. macintoshii* in having smaller alpha conidia and differs from *D. vangueriae* in having shorter beta conidia (Sun et al. 2021).

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), *Diaporthe camelliae-sinensis* clustered in the *D. oncostoma* species complex.
Diaporthe camelliae-oleiferae Qin Yang, MycoKeys 84: 22 (2021)

Typification details – Holotype, CSUFT027; ex-type, HNZZ027

Host – *Camellia oleifera* (Theaceae)

Distribution – Asia (China)

Notes – *Diaporthe camelliae-oleiferae* was found from leaves of *Camellia oleifera* in Hunan, China (Yang et al. 2021b). This species produced superficial pycnidia on PDA, dark brown to black, globose, solitary or clustered in groups of 3–5 pycnidia with pale yellow conidial drops exuding from ostioles, produced ellipsoidal to fusiform, 2-guttulate hyaline alpha conidia, and filiform, aseptate, eguttulate, hyaline beta conidia. The description and illustration of its asexual morph were provided in Yang et al. (2021b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe camelliae-oleiferae* clusters in the *D. arecae* species complex.

Diaporthe camporesii Manawasinghe & K.D. Hyde, Fungal Diversity 100: 177 (2020)

Typification details – Holotype, MFLU 18-0135; ex-type, JZB320143

Host – *Urtica dioica* (Urticaceae), *Ziziphus jujube* (Rhamnaceae)

Distribution – Asia (China), Europe (Italy)

Notes – *Diaporthe camporesii* was reported by Hyde et al. (2020). The species was found as saprophic on the dead aerial stem of *Urtica dioidea* in Forlì-Cesena, Italy (Hyde et al. 2020). This species is characterized by ampulliform, scattered, immersed pycnidial conidiomata, conidiophores reduced to conidiogenous cells, enteroblastic conidiogenous cells, integrated, clustered, paraphyses not observed, hyaline alpha conidia, with 1- or 2-guttules, beta conidia not observed. Detailed descriptions and illustrations of the asexual morph for this species were given by Hyde et al. (2020). The sexual morph is undetermined. In the phylogenetic tree of Hyde et al. (2020), *D. camporesii* formed a separate subclade with *D. compacta*, *D. ganjae*, and *D. sambucusi*.

Typification details – Holotype, SCHM 3611

Host – *Camptotheca acuminata* (Nyssaceae)

Distribution – Asia (China)

Notes – *Diaporthe camptothecae* was found from the living branches of *Camptotheca acuminata* in China. The species produced eustroma, scattered, immersed in bark, erumpent after maturing, tuberous, unilocular, brown to dark brown conidiomata, septate, branched, hyaline conidiophores 9–20 × 1.6–2.5 μm, phialidic, enteroblastic, growing from septate conidiophores, hyaline conidiogenous cells, with oblong to ellipsoidal or fusiform, unicellular, hyaline, 0–3-guttules alpha conidia, 6–8 × 1.9–2.4 μm, and filiform, straight, or somewhat curved, unicellular, hyaline beta conidia, 15–26 × 0.7–1 μm (Chang et al. 2005b; Gao et al. 2017). The sexual morph is undetermined.

Diaporthe camptothecae is represented by a single ITS sequence obtained from its ex-type. In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), the species clustered with *D. actinidiae* and *D. sojae*. However, these species are not well-separated in the phylogenetic tree, indicating a close relationship between them.

Diaporthe canina Sacc., Syll. fung. (Abellini) 1: 657 (1882)

Typification details – N/A

Hosts – Twigs of *Scrophularia canina* (*Scrophulariaceae*), *Linaria nivea* (*Plantaginaceae*)

Distribution – Europe (Italy, Spain)

Notes – *Diaporthe canina* was introduced by Saccardo (1882a). It was found on the twigs of *Scrophularia canina* in Italy. This species produces superficial stromata with aggregated, immersed...
perithecia, fusiform asci, without stalk, 60 × 10 μm, uniseriate, oblong to fusoid, 1-septate, constricted at the septum, 4-guttules, hyaline ascospores, 15 × 4 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe canthii Crous, Persoonia 28: 159 (2012)
Typification details – Holotype, CBS H-20960; ex-type, CPC 19741, 19740 = CBS 132533
Host – On leaves of *Canthium inerme* (Rubiaceae)
Distribution – Africa (South Africa)
Notes – *Diaporthe canthii* is associated with prominent leaf spots on *Canthium inerme* and older infections result in leaves with a shot-hole appearance, as diseased tissue frequently drops out leaving holes in the leaves (Crous et al. 2012). Leaf spots are brown, amphigenous, circular, 2–8 mm diam., with a raised border. The asexual morph characters comprise amphigenous, associated with necrotic tissue, erumpent pycnidia, with branched, 1–3-septate, hyaline conidiophores, 15–40 × 2–4 μm, and phialidic, terminal and lateral conidiogenous cells, with visible periclinal thickening, 1.5–2 μm, aparaphysate, fusiform, tapering towards both ends, straight, aseptate, hyaline alpha conidia, 12–14 × 2.5–3.5 μm, elongated, fusoid, wider in upper third, apex acutely rounded, tapering towards truncate hilum gamma conidia, 15–18 × 2.5–3 μm, and spindle-shaped, curved beta conidia, 25–18 × 1.5 μm (adapted from Crous et al. 2012). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe canthii* clustered in the *D. oncostoma* species complex.

= *Phomopsis capsici* (Magnaghi) Sacc., G. bot. ital., n.s. 23(2): 209 (1916)
= *Phoma capsici* Magnaghi [as ‘capsicum’], Atti Ist. bot. R. Univ. Pavia, 2 Sér. 7: 113 (1902)
= *Phoma capsici* var. caulicola Bianchi, Atti Ist. bot. R. Univ. Pavia, 2 Sér. 9: 303 (1911)
Typification details – Holotype, IMI 202070
Hosts – *Capsicum annum* (Solanaceae), *Juglans* sp. (Juglandaceae), *Zelkova schneideriana* (Ulmaceae)
Distribution – Asia (China, Taiwan), Europe (Bulgaria, Great Britain), North America (USA)
Notes – *Diaporthe capsici* was introduced by Punithalingam (1981). The asexual morph of this species was reported as *Phomopsis capsica*. This species was isolated from *Capsicum* in Great Britain, and it produced scattered lenticular perithecia, 200–250 μm, parenchymatous olivaceous context, hyaline allantoid spores, 7–9 × 2–3 μm, bases 20–22 μm long (Magnaghi 1902). In the asexual morph, this species produced 160–180 μm pycnidia, with fusoid spores, 5–3 × 2 μm, and cloudy, rarely 1–2-guttules, sporophora acicularia, 9–11 × 2 μm (Saccardo 1916). The morphology of the species was described and illustrated in Magnaghi (1902) and Punithalingam (1981). Further details of the asexual morph were given by Saccardo (1916). Pathogenicity tests confirmed the species as pathogenic fungi causing fruit disease on peppers in Bulgaria (Rodeva et al. 2009) and Taiwan (Shen et al. 2010). Fang et al. (2020) reported that *D. capsici* is a fungal plant pathogen that causes branch blight of walnut in China. Moreover, *D. capsica* was isolated from the bark and leaf necrosis of *Zelkova schneideriana* in China (Vetrtraino et al. 2017).

Diaporthe caraganae Jacz., Hedwigia 34(Beibl.): (38) (1895)
Typification details – Holotypes, F12500 (S), BR5020094703316 (BR)
Host – *Caragana arborescens* (Fabaceae)
Distribution – Europe (Germany: Free State of Bayern, Poland), North America (USA), Russia
Notes – *Diaporthe caraganae* was found on dead branches and twigs of *Caragana arborescens* in Russia. The species is characterized by numerous, subglobe perithecia, arranged in a valsolid configuration and immersed in stromatic tissues of this species, cylindrical ostioles, with clavate, oblong asci, 80 × 12 μm, aparaphysate, and ovoid, 1-septate, constricted at the septum,
4-guttules, hyaline ascospores, 20 × 6 μm (Hieronymus et al. 1895). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe careyae Monkai & S. Lumyong, in Monkai et al., Journal of Fungi 9(6): 11 (2023)
Typification details – Holotype, CMUB39996; ex-type, SDBR-CMU469
Host – Careya sphaerica (Lecythidaceae)
Distribution – Asia (Thailand)
Notes – The species was introduced by Monkai et al. (2023). It was found as a saprobe on dead wood of *Careya sphaerica* in Chiang Mai, Thailand. Phylogenetically, *D. careyae* formed a distinct lineage within *D. carpini* species complex (Monkai et al. 2023). This species can be differentiated from other *Diaporthe* in having septate and oblong alpha conidia. A detailed description and illustration of *D. careyae* were given by Monkai et al. (2023).

≡ *Phomopsis caricae-papayae* Petr. & Cif., Annls mycol. 28(5/6): 412 (1930)
Typification details – N/A
Host – *Carica papaya* (Caricaceae)
Distribution – Africa (Nigeria, South Africa), Asia (India, Pakistan), North America (USA: Hawaii), Oceania (Australia: Queensland), West Indies (Dominican Republic, St. Lucia), South America (Brazil: Pernambuco, Venezuela).
Notes – The species was first introduced as *Phomopsis caricae-papayae* by Petrak & Ciferri (1930). Later, it was synonymized under *Diaporthe caricae-papayae* by Rossman et al. (2015). Conidiomata of this species are pycnidial, stromatic, immersed, becoming partially erumpent, dark brown to black, lenticular, usually uniloculate, occasionally bilocular, 150–500 × 70–110 μm, ostiulate. Conidiophores are simple, septate, sometimes branched, arising from the innermost layer of cells lining the pycnidial cavity, with cylindrical to lageniform, enteroblastic, phialidic, hyaline conidiogenous cells. Alpha conidia are fusiform, unilocular, hyaline, guttules, 5–7 × 2–2.5 μm (Petrak & Ciferri 930). The sexual morph is undetermined. The pathogenicity test confirmed its role as a pathogen causing stem rot and fruit rot disease of *Carica papaya*. (Dhingra & Khare 1971).

Only the ITS sequence is available for *Diaporthe caricae-papayae*. In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), this species clustered with *D. guangxiensis* and *D. nelumbonis* which are members of *D. arecae* species complex with low support value.

Diaporthe carpini (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870)
[1869–70]
≡ *Diaporthe carpini* f. *sordida* (Nitschke) Petr., Hedwigia 65: 203 (1925)
≡ *Diaporthe carpini* var. *quercina* Rehm, Ascomyceten: no. 149 (1873)
≡ *Diaporthe sordida* f. *alni* Höhn., Fungi Imperfecti exs., Fasc. 50: no. 2476 (1919)
≡ *Diaporthe sordida* Nitschke, Pyrenomyc. Germ. 2: 252 (1870)
≡ *Phoma sordida* Sacc., Syll. fung. (Abellini) 3: 99 (1884)
≡ *Phoma sordidula* Sacc. & P. Syd., Syll. fung. (Abellini) 14(2): 889 (1899)
≡ *Phomopsis sordidula* Traverso, Fl. Ital. Crypt. (Florence) 2(1): 250 (1906)
≡ *Sphaeria betuli* Pers., Neues Mag. Bot. 1: 83 (1794)
≡ *Sphaeria carpini* Pers., Syn. meth. fung. (Göttingen) 1: 39 (1801)
Typification details – N/A
Hosts – *Carpinus betulus*, *C. orientalis*, *Carpinus* sp. (Betulaceae).
Distribution – Europe (Germany, Italy, Sweden)

Notes – *Diaporthe carpini* was reported as fungi on twigs of *Carpinus* spp. The species is characterized by 8-spored, oblong asci, without stalk, 42 × 6–8 µm, with oblong to lanceolate, 1-septate, 4-guttules, hyaline ascospores, 13 × 3–4 µm (Fuckel 1870). The asexual morph is undetermined.

Diaporthe carpini was described as a species complex. Based on maximum likelihood analysis of the combined gene tree in Norphanphoun et al. (2022), there are sixteen species included in the *D. carpini* species complex. Norphanphoun et al. (2022) also noted that using *tef1*-α, *cal*, and *his3* in phylogenetic analysis could provide better resolution for this species complex, whereas using single-locus ITS and *tub2* did not result in a well-resolved tree.

Typification details – Holotype, BRIP 59932a
Host – *Verticordia grandis* (Myrtaceae)
Distribution – Oceania (Australia)

Notes – *Diaporthe carpiae* was introduced by Tan & Shivas (2022) based on molecular data. It was found from stems of *Verticordia grandis* in Western Australia. In the phylogenetic tree based on the combined dataset of ITS, *tub2*, and *tef1*-α sequences, *D. carpiae* formed a distinct clade with 100% ML and 1.0 PP support (Tan & Shivas 2022).

Typification details – Holotype, BJFC-S1476; ex-type, CFCC 52563
Hosts – *Carya illinoensis* (Juglandaceae), *Orixa japonica* (Rutaceae), *Pyrus pyrifolia* (Rosaceae)
Distribution – Asia (China)

Notes – *Diaporthe caryae* was reported from branches of *Carya illinoensis* in Jiangsu Province, China. The species produced pycnidial conidiomata, immersed in bark, scattered, slightly erumpent through the bark surface, nearly flat, discoid, with a solitary undivided locale, one ostiole per disc, phialidic, unbranched, cylindrical conidiophores, 7–11 × 1.4–2.2 µm, with ellipsoidal or fusiform, obtuse at both ends, aseptate, eguttules, hyaline alpha conidia 7–8.5 × 2.1–2.5 µm, and filiform, straight or hamate, base subtruncate, tapering towards one apex, aseptate, eguttules, hyaline beta conidia, 15.5–34 × 1.1–1.4 µm. A detailed description of the asexual morph is available in Yang et al. (2018a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe caryae* clustered in the *D. sojae* species complex.

Diaporthe caryigena Ellis & Everh., J. Mycol. 9(4): 223 (1903)
Typification details – Holotype, NY J. Dearness 2863
Hosts – *Carya amara*, *C. minima*, *Carya* sp. (Juglandaceae)
Distribution – Europe (United Kingdom), North America (Canada)

Notes – *Diaporthe caryigena* was introduced by Ellis & Everhart (1903a). It was found on the dead branch of *Carya* sp. in Ontario, Canada. Later, the species was reported on dead Hickory limbs. This species has perithecia laying 3–6 together in the inner bark but not penetrating the wood, each group surrounded by a black, circumscribing line, erumpent for and when the limb is slit appears like a section of a shallow cup, the included wood being of a much lighter colour. Ascii are subcylindrical and 60 × 10 µm, with uniseriate, elliptical, 1-septate, each cell with a large transparent nucleus, constricted, ends obtuse ascospores, 9–13 × 3.5–4.5 µm, (Ellis & Everhart 1903a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe cassinia Crous, Persoonia 31: 257 (2013)
Typification details – Holotype, CBS H-21451; ex-type, CPC 21916, 21917 = CBS 136440
Host – *Cassine peragua* (Celastraceae)
Distribution – Africa (South Africa)

Notes – *Diaporthe cassines* was introduced by Crous et al. (2013). It was found on leaves of *Cassine peragua* in South Africa. This species has globose, black, erumpent, pycnidial conidiomata that exude creamy conidial droplets from central ostioles, with 0–1-septate, branched or not, cylindrical conidiophores, 10–20 × 2.5–4 μm, phialidic, cylindrical, terminal and lateral conidiogenous cells, 10–15 × 2–3 μm, 1–3-septate and branched paraphyses, fusoid to ellipsoid, aseptate, guttules alpha conidia, 9–11 × 3.5–4 μm, while gamma and beta conidia are not observed. A detailed description of the asexual morph is available in Crous et al. (2013). The sexual morph is undetermined.

Typification details – Holotype, Tab. XIII, figs 29–32 (loc. cit.)
Host – *Castanea vesca* (Fagaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe castaneae* was introduced by Saccardo (1873). It was found on branches of *Castanea vesca* in Italy. The species is characterized by perithecia embedded in stromatic tissues in valsoid arrangement, containing 8-spored, cylindrical to clavate, with short stalk asci, 55 × 9 μm, uniseriate, cylindrical to fusoid, 1-septate, constricted at the septum, 4-guttules, hyaline ascospores, 15–20 × 3 μm. The asexual morph of this species produced acervuli conidiomata, with fusoid, unicellular, hyaline conidia, 7 × 1.5 μm (Saccardo 1873). Sequence data is not available for this species.

Diaporthe castaneti Nitschke, Pyrenomyc. Germ. 2: 320 (1870)
Typification details – N/A
Host – *Castanea sativa* (Fagaceae)
Distribution – Europe (Germany, Italy), North America (USA)

Notes – *Diaporthe castaneti* was found on dead branches of *Castanea sativa* in Germany. This is a stromatic species, with minute, semi-immersed, subglobose to depressed perithecia, fusiform asci, 75 × 10 μm, and fusiform, uniseptate, constricted at the septum ascospores, 15–18 × 4–5 μm (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe castrensis Sacc. & Speg., Michelia 1(no. 4): 388 (1878)
Typification details – Holotype, PAD, Saccardo, Dec. 1877
Host – *Capparis* sp. (Capparaceae)
Distribution – Europe (Italy)

Notes – This species was introduced by Saccardo (1878). It was found on branches of *Capparis* sp. in Italy. *Diaporthe castrensis* is characterized by gregarious, globose perithecia, ostiolate, 8-spored, fusiform asci, with fusiform, 1-septate, 4-guttules, hyaline ascospores, 15–17 × 3.5–4.5 μm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe castriformis (Preuss) Sacc., Syll. fung. (Abellini) 1: 630 (1882)
≡ *Sphaeria castriformis* Preuss, Linnaea 26: 712 (1855)
Typification details – Holotype, Hoyersw. No 290
Host – Unidentified host
Distribution – Europe (Germany)

Notes – The species was first introduced as *Sphaeria castriformis* by Preuss (1885) from branches of an unidentified host. Later, it was synonymized under *Diaporthe castriformis* by

952
Saccardo (1882a). This species is characterized by conical to depressed stromata, with subglobose, aggregated perithecia, ostiolate, clavate asci, and fusiform ascospores (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe casuarinae Sp., Anal. Mus. nac. B. Aires, Ser. 3 12: 361 (1909)
Typification details – Holotype, LPS, Spegazzini, Mar. 1905
Host – *Casuarina stricta* (Casuarinaceae)
Distribution – South America (Argentina)
Notes – The species was introduced by Spegazzini (1909) from *Casuarina stricta* in South America. The sexual morph characters comprise stromata covered by a black line, with small and globose perithecia, carbonaceous ostiolate, 8-spored, subclavate to fusoid asci, 40–50 × 6–7 μm, aparaphysate, ellipsoid with acute ends, 1-septate, constricted at the septum, guttules, hyaline ascospores, 12 × 6 μm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe catalpae Ellis & Everh., J. Mycol. 9(4): 224 (1903)
Typification details – Holotype, NY, Dearness 2021
Host – *Catalpa* sp. (Bignoniaceae)
Distribution – North America (Canada), Europe (United Kingdom)
Notes – *Diaporthe catalpae* was found on the dead branch of *Catalpa* sp. The species has scattered or often in groups of 2–4, semi-immersed, subglobose perithecia, blackened on the surface, deeply penetrated by a black circumscribing line, ostiolate, erumpent through an acutely elliptical black disc, with clavate to oblong asci, 40–50 × 6–7 μm, biseriate, fusoid to oblong, 4-guttules ascospores, 10–12 × 2.5–3 μm (Ellis & Everhart 1903a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe catamarcensis Sp., Anal. Mus. nac. B. Aires, Ser. 3 12: 361 (1909)
Typification details – Holotype, LPS, Spegazzini, Oct. 1904
Host – *Salix chilensis* (Salicaceae)
Distribution – South America (Argentina)
Notes – The species was introduced by Spegazzini (1909). It was found on *Salix chilensis* in South America. *Diaporthe catamarcensis* is characterized by immersed, globose perithecia, ostiolate, carbonaceous, with black line, 8-spored, fusoid asci, 40–45 × 7–8 μm, and elliptical to fusoid, 1-septate, constricted at the septum, guttules, hyaline ascospores, 12–15 × 3–4 μm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe ceanothi Dearn. & House, Circ. N.Y. St. Mus. 24: 39 (1940)
Typification details – N/A
Hosts – *Ceanothus americanus* (Rhamnaceae), *Pennisetum purpureum* (Poaceae)
Distribution – Asia (Hong Kong), North America (USA)
Notes – This is a saprobic species on twigs. The species is characterized by minute perithecia, ostiolate, fusoid asci, 75 × 6.5 μm, 1-septate, constricted at the septum, guttules, hyaline ascospores, 15 × 3 μm (Dearness & House 1940). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A
Host – *Thuja* sp. (Cupressaceae)
Distribution – Europe (France)
Notes – *Diaporthe celata* was found from dead stem of *Thuja* sp. in France. The perithecia of this species are aggregated, globose to depressed globose, and papillate, containing 8-spored, fusoid
to subcylindrical asci, aseptate, with oblong to fusoid, constricted at the septum, 4-guttules
ascospores (Saccardo 1917). The asexual morph is undetermined. Sequence data is not available
for this species.

Diaporthe celticola C.M. Tian & Qin Yang, in Cao, Luo, Lin, Yang & Deng, MycoKeys 91: 36
(2022)

Typification details – Holotype, BJFC-S1616; ex-type, CFCC 53074
Host – *Celtis vandervoetiana* (Cannabaceae)
Distribution – Asia (China)
Notes – *Diaporthe celticola* was introduced by Cao et al. (2022). It was found on branches of
Celtis vandervoetiana in Zhejiang, China. The species is characterized by solitary, pycnidial
conidiomata, with single necks erumpent through host bark, brown ectostromatic disc, one ostiole
per disc, undivided locule, conidiophores reduced to conidiogenous cells, unbranched, apical or
base sometimes swelling conidiogenous cells, produced ellipsoidal, unicellular, hyaline alpha
conidia, 2-guttules, (5–)6–7 × 3.5–4 μm, beta conidia not observed (Cao et al. 2022). In phylogenetic
analyses of combined ITS, cal, his3, tefl-a and tub2 (Cao et al. 2022), *D. celticola*
formed a distinct clade which was closely related to *D. acaciigena*. However, *D. celticola* differs
from *D. acaciigena* by having smaller alpha conidia (Cao et al. 2022).

Typification details – Holotype, NCYU 19-0357; ex-type, MFLUCC 20-0180, NCYUCC 19-0172
Host – *Celtis formosana* (Ulmaceae)
Distribution – (Taiwan)
Notes – *Diaporthe celtidis* was introduced by Tennakoon et al. (2021). The species was found
as saprobi on dead leaves of *Celtis formosana* in Chiayi, Taiwan (Tennakoon et al. 2021).
Morphological characters comprise pycnidial conidiomata on PDA, globose to subglobose, with
solitary or aggregated, embedded or semi-immersed, light brown to pale yellow conidial droplets
exuded from ostioles, hyaline conidiophores, sometimes reduced to conidiogenous cells, when
present 1-septate, hyaline conidiogenous cells, enteroblastic, phialidic, subcylindrical, tapered to
the apices, determinate, unbranched, hyaline conidia, oval to cylindrical, biguttulate, straight or
slightly curved, unicellular, while beta conidia not observed. The description and illustration of
asexual morph were provided in the original publication (Tennakoon et al. 2021). The sexual
morp is undetermined.

In the phylogenetic tree of Tennakoon et a. (2021), this species was observed to form a
distinct lineage, closely related to the clade containing *D. hubeiensis*, *D. tectonae*, and *D. tulliensis*.
However, *D. celtidis* differs from *D. tulliensis* in having shorter conidiogenous cells (5–6 × 2–3
μm) and biguttulate conidia, while *D. tulliensis* has longer conidiogenous cells (15–20 × 1.5–2.5
μm) and conidia without prominent guttules (Crous et al. 2015a, Tennakoon et al. 2021). *Diaporthe
celtidis* and *D. hubeiensis* differ in their conidial dimensions (5.3 × 2.5 μm vs. 6.1 × 1.8 μm)
(Manawasinghe et al. 2019, Tennakoon et al. 2021). Moreover, *D. celtidis* can be distinguished
from *D. tectonae* in having larger conidiogenous cells (6–10 × 1.2–2.6 μm vs. 1.5–5.2 × 0.9–1.7

Diaporthe ceratozamiae Crous & R.G. Shivas, Persoonia 27: 133 (2011)

Typification details – Holotype, CBS H-20757; ex-type, CPC 17205 = CBS 131306
Host – *Ceratozamia robusta* (Zamiaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe ceratozamiae* was introduced by Crous et al. (2011b). The species was
found from the leaf spots of *Ceratozamia robusta* in Queensland, Australia (Crous et al. 2011b).
The morphological species was observed from fungal sporulated in media, which produced
erumpent, subglobose pycnidia, yellow conidial droplets exuding from ostioles, densely
aggregated, 1–3-septate conidiophores, phialidic conidiogenous cells, with visible periclinal thickening, hamathecium extending above conidiophores, paraphyses, usually with 1–2 basal septa. Alpha conidia are fusiform, straight, aseptate, hyaline. Beta and gamma conidia were not observed (Crous et al. 2011b). The sexual morph is not reported.

The ITS gene tree from Norphanphoun et al. (2022, Fig. 2) revealed that the two strains of *Diaporthe ceratozamiae*, for which only ITS sequences are available, were placed in different placements within the *D. arecae* species complex.

Typification details – Holotype, BJFC-S1478; ex-type, CFCC 52565

Hosts – *Acer pictum* subsp. *mono* (Sapindaceae), *Cercis chinensis* (Fabaceae), *Ginkgo biloba* (Ginkgoaceae), *Populus davidiana* × *Populus bolleana* (Salicaceae)

Distribution – Asia (China)

Notes – *Diaporthe cercidis* was introduced by Yang et al. (2018a). The species was found from the twigs and branches of *Cercis chinensis* in China. It also caused leaf blight of *Acer pictum* subsp. *mono* (Wan et al. 2022), and leaf blight on *Populus davidiana* × *Populus bolleana* in China (Xu et al. 2022). *Diaporthe cercidis* is similar to *D. pescicola* but differs in having shorter conidiophores (7–17 vs. 21–35 μm) and larger alpha conidia (6.5–10 × 3–3.5 vs. 6–8.5 × 2–3 μm) (Dissanayake et al. 2017c, Yang et al. 2018a). Pathogenicity data are available in Wan et al. (2022) and Xu et al. (2022).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cercidis* clustered in the *D. arecae* species complex.

Diaporthe cercophora (Ellis) Sacc., Syll. fung. (Abellini) 2: XLIX (1883)

Typification details – Holotype, BPI 615840

Hosts – *Ilex opaca* (Aquifoliaceae), *Ilex sp.* (Aquifoliaceae)

Distribution – North America (USA)

Notes – *Valsa cercophora* was synonymized under *Diaporthe cercophora* by Saccardo (1883). The species was found from dead branches of *Ilex opaca* in New Jersey, USA (Ellis 1882). It is characterized by perithecia embedded in a subcarbonaceous stroma, circumscribed by a black line penetrating the wood, thick ostioles, with large opening, united into a subconical disk, which pierces the epidermis and rises slightly above it, clavate to cylindrical asci, 76–84 × 10–11.4 μm, biseriate, oblong to elliptical, constricted in the middle, hyaline ascospores, 10–15 × 3.8–4.4 μm, appendiculate at each end, with several small nuclei (adapted from Ellis 1882). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe cerradensis Iantas, Noriler & Glienke, in Iantas, Savi, Schibelbein, Noriler, Assad, Dilarri, Ferreira, Rohr, Thorson, Shaaban & Glienke, Frontiers in Microbiology 12(no. 714750): 8 (2021)

Typification details – Holotype, UPCB97125; ex-type, CMRP4331

Host – *Stryphnodendron adstringens* (Fabaceae)

Distribution – South America (Brazil)

Notes – The species was introduced by Iantas et al. (2021). It was found as an endophyte from a leaf of *Stryphnodendron adstringens* in Brazil. The species is characterized by globose pycnidial conidiomata, densely aggregated, unbranched, aseptate, subcylindrical to cylindrical conidiophores, 4.5–6.5 × 2–4.3 μm, subcylindrical, tapering toward the apex, hyaline conidiogenous cells, produced fusiform, hyaline alpha conidia, 2-guttules, 7 × 2.3 μm, and filiform, curved, aseptate, hyaline beta conidia, 25 × 1.5 μm, gamma conidia not observed (Iantas et al. 2021). Phylogenetic analyses revealed that *D. cerradensis* formed a distinct and was closely related to the species *D. mayteni*, *D. neoraonikayaporum*, and *D. raonikayaporum* (Iantas 2021). However, *D. cerradensis* is different from *D. mayteni* in having larger conidiogenous cells and alpha conidia.
The species is also different from *D. raonikayaporum* in having larger conidiogenous cells. In addition, *D. cerradensis* has larger alpha conidia than those of *D. neoraonikayaporum* (Gome et al. 2013, Doilom et al. 2017, Iantas 2021).

Diaporthe cestri Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 361 (1909)

Typification details – Holotype, LPS, Spegazzini, Jun. 1905

Host – *Cestrum parqui* (Solanaceae)

Distribution – South America (Argentina)

Notes – *Diaporthe cestr* was introduced by Spegazzini (1909). The species was found from rotten branches of *Cestrum parqui* in Santa Fé, Argentina (Spegazzini 1909). It is characterized by globose, membranaceous, black, olivaceous perithecia, completely immersed in wood, with carbonaceous ostioles, fusoid to subcylindrical asci, 55–60 × 7–8 µm, aparaphysate, cylindrical to subfusoid, obtuse at both ends, 1-septate at the middle, constricted at septum, 4-guttules ascospores 12–13 × 3–4 µm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe chailletii Nitschke, Pyrenomyc. Germ. 2: 276 (1870)

Typification details – N/A

Hosts – *Atropa belladonna*, *Atropa* sp. (Solanaceae), *Rhododendron ponticum* (Ericaceae), Undetermined plant

Distribution – Europe (Austria, Belgium, England, Germany, Switzerland, United Kingdom)

Notes – *Diaporthe chailletii* was introduced by Nitschke (1870). The species was found from dead stalks of *Atropa belladonna*, with having irregular, black stromata, without ostioles, immersed, subglobose, depressed, perithecia, with punctiform prominent, occasionally conical ostioles, 8-spored, narrowly clavate to oblong asci, 42 × 6 µm, narrowly fusiform, straight, 2-celled, hyaline ascospores, 12–13 × 2.5–3 µm. The asexual morph is undetermined (Nitschke 1870). Sequence data is not available for this species.

Typification details – Holotype, CDP 460; dried culture of holotype, AVE F-8; ex-type, CDP 460/01

Host – *Chamaerops humilis* (Arecaceae)

Distribution – Europe (Portugal)

Notes – *Diaporthe chamaeropicola* was introduced by Boonmee et al. (2021). It was found associated with foliar lesions of *Chamaerops humilis* in Portugal. However, pathogenicity has not been tested. The species is characterized by pycnidial conidiomata, covered with hyphal outgrowths, lacking an ostiole, conidiophores absent, cylindrical, occasionally ampulliform, tapering towards the apex, straight, aseptate or 1–3-septate, unbranched or branched, hyaline conidiogenous cells, variable in length, dimorphic, mostly phialidic, enteroblastic, occasionally proliferating percurrently giving rise to 1–2 annellations, often with paraphyses, produced cylindrical to ellipsoidal, mostly rounded apex and obtuse to truncate base, aseptate, hyaline alpha conidia, 2-guttules, with a conspicuous guttule at each end, occasionally with several minute scattered guttules, straight to slightly curved, 7.5 × 2.3 µm, beta and gamma conidia not seen (Boonmee et al. 2021). Phylogenetically, *D. chamaeropicola* formed a distinct lineage which was related to *D. ceratozamiae*, *D. loropetali*, and *D. phyllanthicola* (Boonmee et al. 2021). However, *D. chamaeropicola* has larger conidiomata than those of *D. ceratozamiae*, lacks conidiophores, and alpha conidia have a different shape. *Diaporthe chamaeropicola* can be distinguished from *D. loropetali* and *D. phyllanthicola* by comparing the number of nucleotide differences.

Diaporthe chamaeropina Gaja, Monogr. Calic.: 19 (1911)

Typification details – N/A
Host – *Chamaerops humilis* (Arecaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe chamaeropina* was introduced by Gaja (1911). The species was found from *Chamaerops humilis* in Italy. It is characterized by immersed, subglobose stromata, with elongate to cylindrical, black neck, 8-spored, cylindrical to fusoid asci, ap paraphysate, uniseriate, 1-septate, constricted at septum, 4-guttules, hyaline ascospores (Saccardo 1913a). The asexual morph is undetermined. Sequence data is not available for this species.

≡ *Phoma chamaeropis* Cooke, Grevillea 13(no. 68): 95 (1885)
≡ *Phomopsis chamaeropis* (Cooke) Petro., Annls mycol. 17(2/6): 83 (1920) [1919]

Typification details – Holotype, K(M), anon. s.n.
Hosts – *Chamaerops humilis*, *Chamaerops* sp. (Arecaceae), *Pistacia vera* (Anacardiaceae), *Salix* sp. (Salicaceae), *Spartium junceum* (Fabaceae), *Vitis* sp., *Vitis vinifera* (Vitaceae)

Distribution – Europe (Croatia, Greece, Great Britain, Spain), North America (USA)

Notes – *Phoma chamaeropis* was synonymized under *Diaporthe chamaeropis* by Gomes et al. (2013). The species was first found from petioles of *Chamaerops* sp. in Great Britain and also found on the dead part of the leaf of *Chamaerops humilis*, dead branches of *Spartium junceum* (Gomes et al. 2013), *Pistacia vera* (Chen et al. 2014), *Salix* sp., and *Vitis vinifera* (Lawrence et al. 2015). It was reported as causing grapevine wood cankers (Lawrence et al. 2015). The pathogenicity assays of Lawrence et al. (2015) revealed this species as non-pathogenic when using mycelium inoculations in the woody stems, while it was considered pathogenic when using conidial inoculations. The morphological species was observed from fungal sporulated in PNA media, with erumpent, globose, black conidiomata, cream conidial droplets exuding from central ostioles, 1–5-septate conidiophores, with phalidic conidiogenous cells, visible periclinal thickening, ap paraphysate, fusoid to ellipsoid, hyaline, aseptate alpha conidia, and spindle-shaped, curved, aseptate, hyaline beta conidia. Gamma conidia were not observed (Gomes et al. 2013). The sexual morph was not reported.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe chamaeropis* clustered in the *D. oncostoma* species complex.

Typification details – Holotype, BJFC CF202212141; ex-type living culture, CFCC 58812; other living culture, CFCC 58813
Host – *Robinia pseudoacacia* (Fabaceae)
Distribution – Asia (China)

Notes – The species was introduced by Bai et al. (2023). It was found on twigs and branches of *Robinia pseudoacacia* in Beijing, China. Phylogenetically, *Diaporthe changpingensis* is related to *D. canthi* (Bai et al. 2023). The nucleotide pairwise comparison of ITS, tefl-a and tub2 sequences indicated that *D. changpingensis* differs from *D. canthi* (Bai et al. 2023). Moreover, *D. changpingensis* has shorter alpha (5.5–9.0 vs. 12.0–14.0 μm) and shorter beta conidia (13.0–19.0 vs. 18.0–25.0 μm) than those of *D. canthi* (Crous et al. 2012, Bai et al. 2023). Therefore, Bai et al. (2023) introduced *D. changpingensis* as a new species.

Diaporthe characiae Fabre, Annls Sci. Nat., Bot., sér. 6 9: 45 (1879) [1878]

Typification details – N/A
Host – *Euphorbia characias* (Euphorbiaceae)
Distribution – Europe (France)

Notes – The species was introduced by Fabre (1879). It was found from the rotten base of *Euphorbia characias* in Vaucluse, France (Saccardo 1883). *Diaporthe characiae* is characterized by widely diffuse stromata, globose perithecia, with an elongate, narrow, straight or curved ostiole, piercing the bark, 8-spored, lanceolate, sessile asci, 55–70 × 7–9 μm, distichous, oblong, obtuse on
both sides, constricted at the middle, septate ascospores, with 4-guttules, 15–18 × 4 μm (Saccardo 1883). Sequence data is not available for this species.

Typification details – Holotype, BRIP 54884m
Host – *Rapistrum rugosum* (Brassicaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe charlesworthii* was introduced by Shivas et al. in Thompson et al. (2015). The species was found from the stems of *Rapistrum rugosum* in Queensland, Australia. The morphological species was observed from fungal sporulated media on PDA, oatmeal agar (OMA) and water agar with pieces of sterilised wheat stems placed on the surface (WSA), produced abundant pycnidial, subglobose conidiomata, multilocular, ostiolar, necks absent, with 0–2-septate conidiophores, abundant, fusiform to cylindrical, hyaline alpha conidia, and flexuous to J-shaped, hyaline beta conidia (adapted from Thompson et al. 2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe charlesworthii* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Typification details – Holotype, MFLU 18-1305: ex-type, MFLUCC 18-0544
Host – *Magnolia champaca* (Magnoliaceae), *Alstonia scholaris* (Apocynaceae)
Distribution – Asia (Thailand)
Notes – *Diaporthe chiangmaiensis* was introduced by de Silva et al. (2022). It was found as a saprobe on dead twigs of *Magnolia champaca* and *Alstonia scholaris*. Moreover, the species was also found as an endophyte on the healthy leaves of *M. champaca*. Phylogenetically, the species formed a monophyletic clade sister to *Diaporthe* cf. *heveae*. Although the morphology of *Diaporthe* cf. *heveae* was not described because it was a sterile strain, *D. chiangmaiensis* can be differentiated from *Diaporthe* cf. *heveae* by the difference of nucleotide in ITS and tef-a sequences. The sexual and asexual descriptions of *D. chiangmaiensis* were provided by de Silva et al. (2022).

Typification details – Holotype, SCHM 3614 (*Phomopsis chimonanthi*)
Host – *Chimonanthus praecox* (Calycanthaceae)
Distribution – Asia (China)
Notes – *Phomopsis chimonanthi* was synonymized under *Diaporthe chimonanthi* by Gao et al. (2017). The species was found from living branches of *Chimonanthus praecox* in China. *Diaporthe chimonanthi* comprises eustroma, scattered conidiomata, immersed and erumpent after maturing, triangle or tuberous, unilocular, slim, branched, septate conidiophores, with phialidic and enteroblastic conidiogenous cells fusiform, with somewhat obtuse at the base, unicellular, hyaline, with 2 oil drops alpha conidia. Beta conidia (on alfalfa extract + Czapek’s media) are mostly filiform, curved or hamate, rarely abnormal, clavate, straight or somewhat curved, unicellular, hyaline (Chang et al. 2005b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe chimonanthi* clustered in the *D. sojae* species complex.

Typification details – Holotype, HSAUP 194.30; ex-type, SAUCC 194.30
Host – *Litchi chinensis* (Sapindaceae), *Magnolia candollei* (Magnoliaceae)
Distribution – Asia (China)

Notes – Diaporthe chinensis was introduced by Dong et al. (2021b) from leaf spots on Litchi chinensis in Yunnan, China. At the same year de Silva et al. (2021) published a fungus on Magnolia candollei from Yunnan, China using the same name, D. chinensis. Based on International Code of Nomenclature for algae, fungi, and plants (ICN or ICNafp), the published date of D. chinensis Dong et al. was published first, hence it was accepted as a correct name and keep D. chinensis de Silva et al. as illegitimate name (Index Fungorum 2023). The species was observed from sporulating in PDA, and produced subglobose or variable in shape, black conidiomata, and released whitish translucent to yellowish conidial drops exuded from the ostioles. The fungus produces three kinds of conidia including alpha-, beta-, gamma conidia. The detailed description of asexual morph for this species was given in Dong et al. (2021b). The sexual morph is undetermined.

Sequence data is available for this species. Based on the phylogenetic tree in Dong et al. (2021b), the species is belonged to D. sojae species complex.

Diaporthe chionanthi Brunaud, Bull. Soc. bot. Fr. 34: 4 (1887)
Typification details – N/A
Host – Chionanthus virginicus (Oleaceae)
Distribution – Europe (France)
Notes – The species was introduced by Brunaud (1887). The authors could not find information about this species in the original book (Bulletin de la Société botanique de France volume 34, page 4). However, Saccardo (1891) mentioned that this species was found in the dead branches of Chionanthus virginicus in France. It is characterized by small stromata, pierced the bark, staining the surface black and limited by a black line penetrating the wood, with gregarious, globose, black perithecia, immersed in wood, with an almost pierced ostiole, 8-spored, fusoid asci, 52–70 × 7–8 µm, distichous, oblong to fusoid, 3-septate, not or hardly constricted, hyaline ascospores, 12 × 3 µm (Saccardo 1891). Sequence data is not available for this species.

Diaporthe chromolaenae Mapook & K.D. Hyde, Fungal Diversity 101: 130 (2020)
Typification details – Holotype, MFLU 20-0308; ex-type, MFLUCC 17-1422
Host – Chromolaena odorata (Asteraceae)
Distribution – Asia (Thailand)
Notes – Diaporthe chromolaenae was introduced by Mapook et al. (2020), a saprobic fungus which was isolated from dead stems of Chromolaena odorata in Chiang Rai, Thailand. This species is characterized by solitary or scattered, immersed to erumpent, coriaceous, subglobose to obpyriform ascomata, papillate ostiole, without periphyses, paraphyses not observed, 8-spored, unitunicate, clavate to subclavate asci, with a J- apical ring, contained ellipsoidal, 1-septate, hyaline ascospores, guttules when immature. Detailed descriptions and illustrations of sexual morph are available in Mapook et al. (2020). The asexual morph is undetermined.

In the phylogenetic analysis of Mapook et al. (2020), D. chromolaenae is closely related to D. masirevicii strain LC6740 which formed separately from the type strain of D. masirevicii (BRIP 57892a). However, the morphology of D. masirevicii strain LC6740 was not reported. In addition, the morphological comparison of the related taxa, D. kongii and D. masirevicii indicated that both strains are different. Thus, D. chromolaenae was introduced based mainly on phylogeny (Mapook et al. 2020).

Typification details – Holotype, HSAUP 194.35; ex-type, SAUCC194.35
Host – Chrysalidocarpus lutescens (Palmae)
Distribution – Asia (China)
Notes – The species was introduced by Huang et al. (2021a). It was found on diseased leaves of *Chrysalidocarpus lutescens* (Palmae) in Yunnan, China. Phylogenetically, *D. chrysalidocarpi* formed a distinct clade and closely related to *D. spinosa*. However, it can be distinguished from *D. spinosa* by its longer beta conidia (28–32.5 × 1.2–1.6 vs. 18.5–30.5 × 1–1.5 µm) (Guo et al. 2020, Huang et al. 2021a). *Diaporthe chrysalidocarpi* produces only beta conidia, whereas *D. spinosa* produces both alpha and beta conidia. A comprehensive description and illustration of *D. chrysalidocarpi* were given by Huang et al. (2021a).

Typification details – N/A
Host – *Cytisus laburnum* (Fabaceae)
Distribution – Europe (France)
Notes – *Valsa chrysooides* was synonymized under *Diaporthe* by Saccardo (1882a). The species was found from the leaves of *Cytisus laburnum* in France (Tulasne & Tulasne 1865). It is characterized by perithecia crowded in a stroma, with ostioles, 8-spored, linear asci, 100–130 × 7 µm, uniseriate, ovate ascospores, with obtuse at both ends, 1-septate, constricted at the septum, hyaline, 10 × 6.5 µm. Conidia are ovate to oblong, 3–4 long µm, generated within stroma (Saccardo 1882a). Sequence data is not available for this species.

Typification details – Holotype, MFLU 16-2168; ex-type, MFLUCC 17-1023
Host – *Cichorium intybus* (Asteraceae)
Distribution – Europe (Italy)
Notes – *Diaporthe cichorii* was introduced by Dissanayake et al. (2017b). The species was found as saprobiic on a dead aerial stem of *Cichorium intybus* in Italy (Dissanayake et al. 2017b). Morphological characters comprise superficial, solitary or aggregated, globose to oval, dark brown to black conidiomata, straight, or sinuous, aseptate conidiophores, with subcylindrical, filiform, straight to curved, hyaline conidiogenous cells, fusiform or oval, hyaline alpha conidia, while beta conidia not observed. Detailed descriptions and illustrations of the asexual morph for this species are available in Dissanayake et al. (2017b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cichorii* clustered in the *D. sojae* species complex. Here, we accept it as a species member of *D. sojae* species complex.

Diaporthe ciliata (Pers.) Sacc., Syll. fung. (Abellini) 1: 326 (1882)
eq *Sphaeria ciliata* Pers., Observ. mycol. (Lipsiae) 2: 67 (1800) [1799]
Typification details – N/A
Hosts – *Malus* sp. (Rosaceae), *Pyrus* sp. (Rosaceae), *Ulmus* sp. (Ulmaceae), undetermined plant
Distribution – North America (USA) (from non-type specimen)
Notes – *Sphaeria ciliata* was synonymized under *Diaporthe* by Saccardo (1882a). The species was found from branches of *Ulmi* sp. It is characterized by distinct stroma, comprising 8–12 ovate perithecia, with long and thin cilia-like ostioles. Sequence data is not available for this species (Persoon 1800).

Diaporthe cinerascens Sacc., Syll. fung. (Abellini) 1: 679 (1882)
≡ *Phoma cinerascens* Sacc., Michelia 1(no. 5): 521 (1879)
eq *Phomopsis cinerascens* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 278 (1906)
Typification details – N/A
Hosts – *Ficus benjamina*, *F. carica*, *F. lyrata*, *F. nitida*, *F. palmata*, *F. pumila*, *F. religiosa*, *F. ulmifolia* (Moraceae), *Podocarpus macrophyllus* (Podocarpaceae)
Distribution – Africa (South Africa), Asia (China, India, Japan, Korea, The Philippines), Europe (Bulgaria, France, Greece, Italy: Sicily, Portugal, Scotland, Spain), North America (Canada, USA: California, Maryland), South America (Brazil)

Notes – The species was found from dried branches of Ficus carica in Italy, and was described with both morph (Saccardo 1882a). The asexual morph is characterized by ascomata that are discrete, gregarious, nesting in the bark, globose-depressed, with cylindrical and slightly protruding ostiole, 8-spored, oblong to fusoid asci, 50–55 × 6–7 µm, with oblong to fusiform, acute on both sides, 1-septate, constricted, 4-guttules, hyaline ascospores, 12–15 × 3–4 µm. The asexual morph is reported as globose, depressed, black conidiomata that produce fusoid, hyaline, 2-guttules, alpha conidia, 8 × 2 µm (see Saccardo 1882a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe cinerascens clustered in the D. oncostoma species complex.

Typification details – Holotype, BJFC-S1482; ex-type, CFCC 52569
Host – Cinnamomum sp. (Lauraceae)
Distribution – Asia (China)
Notes – Diaporthe cinnamomi was introduced by Yang et al. (2018a). The species was found from symptomatic twigs of Cinnamomum sp. in China (Yang et al. 2018a). The morphological species was observed from fungal sporulated in PDA, which produced pycnidial, globose, deeply embedded in the substrate, erumpent, dark brown to black conidiomata, whitish translucent to cream conidial drops exuding from the ostioles, with hyaline, branched conidiophores, and ellipsoidal to oval, hyaline, aseptate alpha conidia, with 2-guttules, while beta conidia not observed (Yang et al. 2018a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe cinnamomi clustered in the D. sojae species.

Diaporthe circumscripta G.H. Otth ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 207 (1870)
= Fusicoccum petrakianum Sacc., Annls mycol. 11(4): 322 (1913)
= Phoma sambucina Sacc., Michelia 2(no. 6): 97 (1880)
= Phomopsis sambucina (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 269 (1906)
= Phomopsis sambucina f. petrakiana (Sacc.) Petr. [as ‘petrakeana’], Annls mycol. 19(3–4): 210 (1921)
Typification details – N/A
Hosts – Sambucus nigra, S. racemose (Adoxaceae), Sambucus sp. (Adoxaceae)
Distribution – Europe (Denmark, Italy, Poland, Sweden, Ukraine, United Kingdom)
Notes – Diaporthe circumscripta was introduced by Fuckel (1870). The species was found from the dead twigs of Sambucus nigra (Fuckel 1870). It is characterized by 8-spored, elongate asci, 48 × 8 µm, oblong to lanceolate, 1-septate, with guttules, hyaline ascospores, 11 × 3–4 µm (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe cissampeli Crous & Roets, Persoonia 36: 361 (2016)
Typification details – Holotype, CBS H-22628; ex-type, CPC 27302 = CBS 141331
Host – Cissampelos capensis (Menispermaceae)
Distribution – African (South Africa)
Notes – Diaporthe cissampeli was introduced by Crous et al. (2016b). The species was found from the leaves and twigs of Cissampelos capensis in South Africa (Crous et al. 2016b). The morphological species was observed from fungal sporulated on PNA media, which produced pycnidial, solitary, black, erumpent, globose conidiomata, with exuding creamy droplets from central ostioles, 1–2-septate, branched, subcylindrical, straight to sinuous conidiophores, phialidic conidiogenous cells, visible periclinal thickening, with subcylindrical, aseptate, guttules, hyaline
alpha conidia. Gamma and beta conidia were not observed (see Crous et al. 2016b). The sexual morph is undetermined.

In the phylogenetic tree Norphanphoun et al. (2022, Fig. 1), *D. cissampeli* clustered in the *D. oncostoma* species complex.

≡ *Diaporthe citrincola* Rehm, Leafl. of Philipp. Bot. 6(no. 105): 2269 (1914)

≡ *Phomopsis californica* H.S. Fawc., Phytopathology 12: 419 (1922)

≡ *Phomopsis caribaea* W.T. Horne, Phytopathology 12(9): 417 (1922)

≡ *Phomopsis citri* H.S. Fawc., Phytopathology 2(3): 109 (1912)

Typification details – Holotype, BPI 892456 (*Phomopsis citri*)

Distribution – Africa (Mauritius, South Africa, Zimbabwe), Asia (Cambodia, China, Hong Kong, India, Japan, Korea, Myanmar, Taiwan, Thailand, The Philippines), Europe (Portugal), Gulf States, North America (Barbados, Costa Rica, Cuba, Haiti, Jamaica, Mexico, Panama, Puerto Rico, USA), Oceania (Australia, Fiji, New Zealand, Niue, Papua New Guinea, Samoa, Tonga), South America (Brazil, Suriname, Trinidad and Tobago)

Notes – *Diaporthe citri* was introduced by Wolf (1926) from the twigs of *Citrus* sp. in the USA, and it caused melanosis of fruits, leaves and shoots, stem end rot of fruits and gummosis (canker) of perennial branches (Huang et al. 2013). The sexual morph has globose to conical, scattered, immersed in bark perithecia, with tapering perithecial necks, 6–8-spored, sessile, elongate to clavate asci, and elongated to elliptical, hyaline, 1-septate, 4-guttuled aseptosporic, with larger guttules at centre. The asexual morph on WA is characterized by conical pycnidia, embedded in tissue, erumpent at maturity, with an elongated black neck, often with a yellowish, spiral conidial cirrus extruding from ostiole, hyaline, unbranched, ampulliform, straight to sinuous conidiophores, with phialidic conidiogenous cells, abundant paraphyses, and ovate to ellipsoidal, hyaline, aseptate, 1–2-guttuled, rarely 3-guttuled alpha conidia, beta and gamma conidia were not observed (see Udayanga et al. 2014b). We consider *D. citrincola* as a synonym of *D. citri*, following Udayanga et al. (2014b). Huang et al. (2013) tested the pathogenicity of *D. citri*, *D. citriasiana* and *D. citrichinensis* on Ponkan fruits (*Citrus reticulata*) and reported that only *D. citri* could cause melanosis of leaves.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig.1), *Diaporthe citri* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Diaporthe citriasiana F. Huang, K.D. Hyde & Hong Y. Li, Fungal Diversity 61(1): 246 (2013)

Typification details – Holotype, ZJUD30H; ex-type, ZJUD30 = CGMCC3.15224 = CBS134240

Hosts – *Citrus grandis*, *C. paradisi*, *Citrus* sp., *C. unshiu* (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe citriasiana* was introduced by Huang et al. (2013). The holotype was found from the dead wood of *Citrus unshiu* in China (Huang et al. 2013). Conidia are cylindrical and larger than other *D. citri* and *D. citrichinensis* species from *Citrus*. The detailed descriptions and illustrations of the asexual morph for this species were given by Huang et al. (2013). A pathogenicity test conducted on Ponkan fruits (*Citrus reticulata*) confirmed that this species is pathogenic and can cause fruit-stem end rot and twig blight, but it could not induce any melanose-like symptoms (Huang et al. 2013).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig.1), Diaporthe citriasiana clustered in the D. sojae species complex.

Diaporthe citrichinensis F. Huang, K.D. Hyde & Hong Y. Li, Fungal Diversity 61(1): 247 (2013)
Typification details – Holotype, ZJUD34H; ex-type, ZJUD34 = CGMCC3.15225 = CBS134242

Hosts – *Citrus grandis*, *Citrus* sp., *C. unshiu* (Rutaceae), *Cunninghamia lanceolata* (Cupressaceae), *Fortunella margarita* (Rutaceae)

Distribution – Asia (China)

Notes – Diaporthe citrichinensis was found on dead wood of *Citrus unshiu* in China (Huang et al. 2013). The species can be differentiated from *D. citri* and *D. citriasiana* from *Citrus* in having shorter and narrower alpha conidia. Detailed descriptions and illustrations of the asexual morph for this species were given by Huang et al. (2013). The pathogenicity test confirmed it as pathogenic causing stem-end rot of mature fruits under wounded inoculation only, so it has minor importance to the citrus industry (Huang et al. 2013).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe citrichinensis* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Typification details – Holotype, HSAUP 0495; ex-type, SAUCC0495

Host – *Clausena anisata* (Rutaceae)

Distribution – Asia (China)

Notes – Diaporthe clausenae was isolated from the leaf spot of *Clausena anisata* in Yunnan, China (Dong et al. 2020). The species produced pycnidial conidiomata on PDA, erumpent, coated with short hyphae, cylindrical, branched, septate conidiophores, phialidic, terminal, cylindrical, hyaline conidiogenous cells, produced ellipsoid or oval, hyaline alpha conidia, with 2–4 big and/or 2–4 small guttules, and hamate or curved, hyaline beta conidia. A detailed asexual morph description is available in Dong et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree of Dong et al. (2020), *Diaporthe clausenae* is closely related to *D. charlesworthii* and *D. sennicola*. However, *D. clausenae* differs from *D. sennicola* and *D. charlesworthii* in having 2–4 big or small guttules in alpha conidia. Moreover, *D. sennicola* has shorter alpha conidia than *D. clausenae* (6.0–7.2 µm vs. 6–12 µm) and lacks beta conidia (Thompson et al. 2015, Yang et al. 2017a, Dong et al. 2020).

Diaporthe claviceps Ellis & Dearn., N. Amer. Pyren. (Newfield): 738 (1892)

Typification details – Holotype, NY, Dearness s.n.

Host – *Ostrya virginica* (Betulaceae)

Distribution – North America (Canada)

Notes – Diaporthe claviceps was introduced by Ellis & Everhart (1892). The species was found from decorticated decayed wood of *Ostrya virginica* in Ontario, Canada. The sexual morph has globose perithecia, buried in the wood scattered or subseriately arranged, the separate groups surrounded by a black line penetrating the wood, with erumpent, cylindrical, rough, brittle, black ostioles, clavate asci, 35–45 × 4.5–5 µm, biseriate, oblong, 1-septate, constricted at the septum, with 4-nucleate, hyaline ascospores, 11–13 × 3.5–4 µm (adapted from Ellis & Everhart 1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe clematidina Phukhams., M.V. de Bult & K.D. Hyde, Fungal Diversity 102: 160 (2020)

Typification details – Holotype, MFLU 17–1466; ex-type, MFLUCC 17–2060

Host – *Clematis subumbellata* (Ranunculaceae)

Distribution – Asia (Thailand)

Notes – Diaporthe clematidina was established by Phukhamsakda et al. (2020). The species was found as saprobic on dead stems of *Clematis subumbellata* in Chiang Rai, Thailand
(Phukhamsakda et al. 2020). The sexual morph has solitary to aggregated, immersed perithecial ascomata, with central or eccentric, broad oblong, papillate ostioles, filled with periphyses, dense paraphyses, constricted at septa, with unitunicate, 8-spored, oblong to broad oblong, short or apedicellate ascis, with a refractive, J-, apical ring, contained oblong to ellipsoidal, uniseptate, hyaline ascospores. The asexual morph on PDA is characterized by globose conidiomata, eustromatic, multilocular, gregarious, with cylindrical, hyaline conidiophores, phialidic, terminal, cylindrical conidiogenous cells, produced ovate to ellipsoidal, aseptate, 2-guttules, hyaline alpha conidia, and fusiform, hyaline beta conidia, gamma conidia were not observed. The other morphological characters of this species were described and illustrated in Phukhamsakda et al. (2020). Phylogenetic analysis revealed that D. clematidina is sister to D. aquatica (Phukhamsakda et al. 2020). However, D. clematidina differs from D. aquatica in its shorter neck (1100–2250 × 80–120 vs. 125–221 × 47–50 µm), and broad oblong ascospores with conical ends (Hu et al. 2012, Phukhamsakda et al. 2020).

Diaportha clerodendri Somani, in Somani, Jadhav & Wangikar, Indian Phytopath. 30(2): 253 (1978) [1977]
Typification details – Holotype, IASD393
Host – Clerodendrum inerme (Lamiaceae)
Distribution – Asia (India)
Notes – The species was introduced by Somani et al. (1978). It was found on drying stems of Clerodendrum inerme in Maharashtra, India. However, the authors were unable to find the original description of the species. Sequence data is not available for this species.

= Phoma cocoina var. phoenicis Brunaud, J. Bot., Paris 1: 153 (1887)

= Phyllosticta cocoina var. phoenicis (Brunaud) Allesch., Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1(6): 161 (1898)

Typification details – N/A
Host – Cocos nucifera, Phoenix dactylifera (Arecales)
Distribution – Asia (India), Europe (France), South America (Guyana)
Notes – Diaportha cocoina was introduced by Rossman et al. (2015). The species was found from old petioles of Cocos nucifera in Guyana (Cook 1877b). It is characterized by erumpent, globose, black perithecia, containing abundant, ellipsoid, hyaline ascospores (Cook 1877b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaportha coemansii Nitschke, Pyrenomyc. Germ. 2: 257 (1870)

Typification details – N/A
Hosts – Rubus fruticosus, R. idaeus, Rubus sp. (Rosaceae)
Distribution – Europe (Germany)
Notes – Diaportha coemansii was introduced by Nitschke (1870). The species was found from dead twigs and trunks of Rubus fruticosus in Müster, Germany (Nitschke 1870). It is characterized by perithecia embedded in host tissue, subglobose, often depressed, with elongate to subcylindrical, slightly thick ostioles, narrowly clavate to subcylindrical, sessile asci, 36 × 7 µm, fusiform to subcylindrical, hyaline, not constricted ascospores, 8–10 × 2–2.5 µm (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.
Typification details – Holotype, MFLU 17-2770; ex-type, MFLUCC 17-2636
Host – *Magnolia champaca* (Magnoliaceae)
Distribution – Asia (Thailand)
Notes – *Diaporthe collariana* was introduced by Perera et al. (2018a). The species was found from the fruits and pedicels of *Magnolia champaca* in Thailand (Perera et al. 2018a). It is saprobic and characterized by pycnidial, eustromatic, subepidermal, semi-immersed, scattered, globose to ampulliform or irregular conidiomata, with prominent necks, conidial mass exuding in cirrhi, white to pale-yellow, with oblong to ellipsoidal, aseptate, straight, guttules, hyaline alpha conidia, and straight, curved or hamate, hyaline beta conidia (Perera et al. 2018a). Gamma conidia were not observed. The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe collariana* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Typification details – Holotype, LPS, Spegazzini, 1888–96
Host – *Colletia ferox* (Rhamnaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe colletiae* was introduced by Spegazzini (1898) from dead branches of *Colletia ferox* in Buenos Aires, Argentina. The species has black, scattered stromata, often covered with bark, with black line, containing 3–5, globose perithecia, with thick ostioles, 8-spored, cylindrical asci, 80–100 × 10–15 µm, with short pedicellate, a paraphysate, uniseriate, ellipsoid, 1-septate, constricted in the middle, 1-guttules, hyaline ascospores, 12–15 × 8 µm (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, May 1888
Host – *Colletia ferox* (Rhamnaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe colletiicola* was found on rotten branches of *Colletia ferox* in Buenos Aires, Argentina and introduced by Spegazzini (1889). The species has stromata elongated, brown to black line, with densely gregarious, globose perithecia, ostioles, papillate, fusoid to subclavate asci, 50–55 × 7–8 µm, a paraphysate, ellipsoid to biconical, 1-septate, strongly constricted at the septum, 2-guttules, hyaline ascospores, 12–13 × 3–5 µm (Spegazzini 1989). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, NY, Macoun 32
Host – on dead branches of unidentified tree
Distribution – North America (Canada)
Notes – *Diaporthe columbiensis* was introduced by Ellis & Everhart (1890). It was found on dead branches of an unidentified tree in British Columbia Province, Canada. The species is characterized by elliptical stromata, with a distinct black circumscribing line, subcercinate clustered of 3–6 perithecia, with erumpent ostiole (not strongly prominent) through the thin, black, superficial convex crust that covers the stroma, with oblong to lanceolate asci, 100 × 12 µm, biseriate, oblong, 1-septate, constricted, with a large nucleus in each cell, hyaline ascospores, 20–22 × 7–8 µm (Ellis & Everhart 1890). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BPI 841341; ex-type, CBS 109873 = AR 3612
Host – *Vaccinium vitis-idaea* (Ericaceae)

Distribution – North America (USA)

Notes – Farr et al. (2002) established *Phomopsis columnaris* from the dying stem of *Vaccinium vitis-idaea* in North America (USA) based on morphology and LSU sequence analysis. However, Rossman et al. (2016) transferred this species to *Diaporthe* based on recommendations made for using one generic name. *Diaporthe columnaris* has dark brown colouration of the colonies on Czapek Solution Agar (CSA) which is similar to *D. sclerotioides*. However, *D. sclerotioides* differs from *D. columnaris* by lack of conidiophores and has the ventricose conidiogenous cells, while *D. columnaris* has thin-walled, brown, multicellular, elongate, tightly packed, *textura prismatica* conidiophores, with lining pycnidial base and sides up to apex, conidiogenous cells formed at the apex of the conidiophores, obclavate to cylindric, developing from the apex of columnar cells. Detailed descriptions and illustrations of the asexual morph for this species were given by Farr et al. (2002).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe columnaris* clustered in the *D. sojae* species complex.

Typification details – Holotype, HMAS 245778; ex-type, CGMCC 3.17536 = LC3083

Hosts – *Actinidia deliciosa* (Actinidiaceae), *Camellia sinensis* (Theaceae)

Distribution – Asia (China)

Notes – *Diaporthe compacta* was introduced as an endophyte of *Camellia sinensis* from China by Gao et al. (2016). This species is related to *D. ganjae* (CBS 180.91) in the phylogenetic tree of Gao et al. (2016). However, *D. compacta* is different in producing larger beta conidia than those in *D. ganjae*. Detailed descriptions and illustrations of the asexual morph for this species were given by Gao et al. (2016). The sexual morph is undetermined. Pathogenicity data was performed by Du et al. (2021), which confirmed *D. compacta* caused leaf spot and shoot blight of kiwifruit in China.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe compacta* clustered in the *D. sojae* species complex.

Typification details – N/A

Hosts – *Ailanthus glandulosa* (Simaroubaceae), *Melia azedarach* (Meliaceae)

Distribution – Europe (Italy), South America (Argentina)

Notes – *Diaporthe compressa* was introduced by Saccardo (1875). The species occurred on the petioles of *Ailanthus glandulosa* and *Melia azedarach* in Italy (Saccardo 1882a). *Diaporthe compressa* is characterized by stroma with black line, globose-depressed perithecia, with very short ostiole, perforating periderm, 8-spored, biseriate, fusoid to oblong asci, 50–55 × 6–7 μm, cylindrical to fusoid, 1-septate, constricted in the middle, 4-guttules, hyaline ascospores, 15 × 3.5–4 μm, (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe concrescens (Schwein.) Cooke, Grevillea 13(no. 66): 38 (1884)

Typification details – Holotype, PH, Schweinitz s.n.; lectotype, BPI 799375

Host – *Ribes aureum* (Grossulariaceae)

Distribution – North America (USA)

Notes – *Diaporthe concrescens* was found from the dead branches of *Ribes aureum* in Pennsylvania, USA, and was originally described as *Sphaeria concrescens* by Schweinitz (1832). Cooke (1884) synonymized *S. concrescens* under *D. concrescens* and noted that it has fusiform, 4-nucleates, then 1-septate ascospores, 12 long μm. The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe coneglanensis Sacc. & Speg., Michelia 1(no. 1): 29 (1877)

= *Phoma coneglanensis* Sacc., Michelia 2(no. 7): 340 (1881)

= *Phomopsis coneglanensis* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 257 (1906)

Typification details – Holotype, Spegazzini, Jan. 1877; Other herbaria NY02929700, 2929701

Hosts – *Aesculus hippocastanum*, *A. parviflora*, *Aesculus* sp. (Sapindaceae)

Distribution – Europe (Czechoslovakia, Germany, Ireland, Italy, Poland, Ukraine, Yugoslavia), North America (USA)

Notes – *Diaporthe coneglanensis* was found from branches of *Aesculus hippocastanum* in Conegliano, Italy (Saccardo 1877). The sexual morph of this species was described in Saccardo (1877) with globose perithecia, short black ostiole, that are immersed in bark with black line along the wood limited, containing fusoid asci, 50–65 × 6–8 µm, a paraphysate, 8-spored, fusoid, 1-septate, constricted, 4-guttules, hyaline ascospores, 14–16 × 3–4 µm. Sequence data is unavailable for this species.

Diaporthe conferta H. Dong, J.W. Xia & X.G. Zhang, in Dong et al., Mycosistema 40(3): 442 (2021)

Typification details – Holotype, HSAUP 194.9; ex-type, SAUCC 194.9

Host – *Elaeagnus conferta* (Elaeagnaceae)

Distribution – Asia (China)

Notes – *Diaporthe conferta* was introduced by Dong et al. (2021b). It was found on leaf spot of *Elaeagnus conferta* in Yunnan, China. The species was observed from sporulating in PDA, and produced subglobose or variable in shape, black conidiomata, and the ostioles released yellowish translucent conidial droplets exuded. It produces only alpha conidia which are ellipsoid or oval shaped, 2-guttules, apex bluntly rounded, base obtuse, and hyaline, 5–7 × 2–3 µm. A detailed description of asexual morph for this species was given in Dong et al. (2021b). The sexual morph is undetermined. Based on phylogenetic tree in Dong et al. (2021b), *D. conferta* clustered with other species belonged to *D. sojae* species complex as mentioned by Norphanphoun et al. (2022).

Diaporthe congener Ellis & Everh., N. Amer. Pyren. (Newfield): 426 (1892)

Typification details – Holotype, NY, Dearness s.n. (Ellis & Everhart, N. Amer. Fung. 2532)

Host – *Acer* sp. (Sapindaceae), *Fraxinus* sp. (Oleaceae)

Distribution – North America (Canada, USA)

Notes – *Diaporthe congener* was introduced by Ellis & Everhart (1892). It was found on dead limbs of *Fraxinus* in Ontario, Canada. The species has evenly scattered, depressed conical stromata, erumpent through the ruptured epidermis, limited by a black circumscribing line which penetrates the wood, 6–8 perithecia in a stroma, abruptly contracted into slender slightly converging necks, with rounded, umbilicate, slightly projecting ostiole, with clavate to cylindrical asci, 70–75 × 10–12 µm, and 1–2-seriate, elliptical, 1-septate, strongly constricted, hyaline ascospores, each cell with a large nucleus, 12–14 × 6 µm. A detailed description was provided in Ellis & Everhart (1892). Sequence data is not available for this species.

Diaporthe congesta Ellis & Everh., J. Mycol. 9(3): 165 (1903)

Typification details – Holotype, NY, Harper 784

Hosts – *Aronia melanocarpa* (Rosaceae), *Pyrus americana* (Rosaceae), *Sorbus* sp. (Rosaceae)

Distribution – North America (USA)

Notes – *Diaporthe congesta* was introduced by Ellis & Everhart (1903b) from the dead branches of *Pyrus americana* in Michigan, USA. It is characterized by conical to globose stromata, perithecia lying in the bottom of the stroma, partly sunk in the subjacent wood, 20–30 in a stroma, hemispherical, papillate ostiola bursting through the epidermis in a densely crowded fascicle, clavate to cylindrical asci, 66 × 6 µm, subbiseriate, oblong to fusoid, hyaline ascospores, 11–13 ×
Typification details – Holotype, BJFC-S1484; ex-type, CFCC 52571
Host – Alangium chinense (Cornaceae)
Distribution – Asia (China)
Notes – Diaporthe conorum was introduced by Yang et al. (2018a). The species was found from canker disease on Alangium chinense in China. Diaporthe conica produced alpha conidia which are ellipsoidal, asperate, hyaline, with biguttules, 5.5–7 × 2.3–3 μm, while beta conidia not observed. Detailed descriptions and illustrations of the sexual morph for this species were given by Yang et al. (2018a). The sexual morph of D. conica is undetermined. Phylogenetic analyses based on ITS, cal, his3, tefl-α, and tub2 indicated that four strains of D. conica clustered within Diaporthe and as a distinct species (Yang et al. 2018a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe conica clustered in the D. eres species complex (= D. alnea species complex).

Diaporthe conigena Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 136 (1903)
Typification details – N/A
Host – Picea excelsa (Pinaceae)
Distribution – Europe (Luxembourg)
Notes – Diaporthe conigena was introduced by Feltgen (1903). The species was found from Picea excelsa in Kockelscheuer, Luxembourg. The sexual morph has globose perithecia, solitary or gregarious, clustered of a few to 10 perithecia, hardly protruding ostiole, clavate to fusiform, rounded at the top, with short-stalked asci, 40–44 × 6.6–9 μm, aseptate, unisporous, 1-septate, not constricted in the middle, hyaline ascospores, 11–15 × 4.5–5 μm, with 2-guttules in each cell (Feltgen 1903). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe conjuncta (Nees) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]
= Phomopsis decedens var. conjuncta (Nees) Grove, British Stem- and Leaf-Fungi (Colomycetes) (Cambridge) 1: 183 (1935)
≡ Sphaeria conjuncta Nees, Syst. Pilze (Würzburg): 305 (1816) [1816-17]
Typification details – Holotype, BPI 799392 (Shear Study Collection Types & Rarities Series I of Sphaeria conjuncta)
Host – Corylus avellana (Betulaceae), Rubus idaeus (Rosaceae)
Distribution – Europe (Austria, Belgium, Czechoslovakia, France, Germany, Poland, Sweden), North America (USA)
Notes – Fuckel (1870) synonymized Sphaeria conjuncta under Diaporthe conjuncta (Nees) Fuckel (not D. conjuncta Niessl). The species was found on Corylus avellana (Fuckel 1870). It is characterized by 8-spored, clavate, stalked asci, 60 × 8 μm, and oblong to lanceolate, subcurved, 1-septate, hyaline ascospores, 16 × 4 μm (Fuckel 1870). Sequence data is not available for this species.

Diaporthe conorum (Desm.) Niessl, Hedwigia 15: 2 (1876)
Typification details – Lectotype, BPI 799399 (Designated by Rossman, Udayanga, Castlebury and Hyde, Taxon 63(4): 935. 2014)

Hosts – Abies spp. (Pinaceae), Cedrus deodara (Pinaceae), Cephalotaxus harringtonia var. nana (Cephalotaxaceae), Chamaecyparis obtusa (Cupressaceae), Cryptomeria japonica (Cupressaceae), Larix spp. (Pinaceae), Metasequoia glyptostroboides (Cupressaceae), Pinus spp., Picea spp., Pseudotsuga spp., Tsuga canadensis (Pinaceae)

Distribution – Africa (Kenya, Tanzania), Asia (China, Japan, Korea), Europe (Czechoslovakia, Denmark, France, Georgia, Norway, Poland, Spain, The Netherlands), North America (USA: Iowa, Maine, Washington)

Notes – Diaporthe conorum was introduced by Niessl (1876a). The species was found from the cones of Pinus sylvestris in France (Desmazières 1846). Diaporthe conorum is characterized by immersed perithecia, biseriate, subclavate asci, with ovate to oblong, semi-opaque ascospores (Desmazières 1846). Diaporthe conorum was considered as a synonym of D. eres (Gomes et al. 2013, Index Fungorum 2023). However, the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3) indicated that the single ITS of D. conorum (UAS002, type strain) formed as a distinct species within Diaporthe, and separated from the non type strain (MAFF 410330). Additional sequence data are needed to confirm its phylogenetic placement.

Typification details – Holotype, HKAS 107534; ex-type, CGMCC 3.20096 = GZCC19-0084
Host – On decaying wood
Distribution – Asia (China)

Notes – This species is only known from its holotype and paratype collections and it is saproplc on decaying wood (Dissanayake et al. 2020). It is characterized by clustered or solitary, globose to subglobose or irregular, black ascomata, with unitunicate, 8-spored, sessile, elongate to clavate asci, and elongated to elliptical, 2-celled, often 4-guttuled, hyaline ascospores. A detailed sexual morph description of this species was provided by Dissanayake et al. (2020). The asexual morph is not observed. In the phylogenetic tree of Dissanayake et al. (2020), this species formed a well-supported basal clade, indicating its distinctness from other Diaporthe species.

Typification details – Holotype, IMI 312693; ex-type, IMI 312959 and DAOM 196873
Host – Convolvulus arvensis (Convolvulaceae)
Distribution – Asia (Turkey), North America (Canada)

Notes – Phomopsis convolvuli was found from Convolvulus arvensis in Canada and introduced by Ormeno-Nuñez et al. (1988) based on the colony appearance, morphology of the conidiomata, size of the conidiogenous cells, and size and shape of alpha conidia. However, it was synonymized as Diaporthe convolvuli by Gomes et al. (2013). The species is causing anthracnose on Convolvulus arvensis (Ormeno-Nuñez et al. 1988, Gomes et al. 2013). More morphological details can be seen in Ormeno-Nuñez et al. (1988).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe convolvuli clustered in the D. sojae species complex.

Typification details – Holotype, LPS, Spegazzini, Oct. 1904
Host – Corallo B. (Fabaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe corallocleni* was introduced by Spegazzini (1909). The species was found from dead branches of *Coralloclenia crista-galli* in Buenos, Argentina. It is characterized by immersed, membranaceous olivaceous perithecia, with carbonaceous ostiole, 8-spored, fusoid to subclavate asci, 55–60 × 7–8 μm, a paraphysate, biseriate, subfusoid, 1-septate, 4-guttules, hyaline ascospores, 14–15 × 3.5–4 μm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe coramblicola (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 623 (1882)
Typification details – Holotype, K(M), Keith, 17 Apr. 1875
Host – *Brassica oleracea* (Brassicaceae)
Distribution – Europe (Great Britain)
Notes – *Diatrype coramblicola* was described by Berkeley & Broome (1878). The species was found from the stalks of cabbage in Great Britain. *Diatrype coramblicola* was synonymized under *Diaporthe coramblicola* by Saccardo (1882a). The species is characterized by elongated pustules, with ostiole, and fusiform, 3–4-guttules ascospores, 8–9 long μm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe corni Fuckel, Jb. nassau. Ver. Naturk. 23–24: 207 (1870)
Typification details – N/A
Hosts – *Cornus* spp. (Cornaceae), *Swida sanguinea* subsp. *Australis* (Cornaceae)
Distribution – Asia (Armenia), Europe (Germany, Poland, Sweden), North America (USA)
Notes – *Diaporthe corni* was introduced by Fuckel (1870). The species was found from *Cornus alba* in Germany (Fuckel 1870). *Diaporthe corni* has scattered, subglobose spermogonia, nestling under epidermis, papillate, with cylindrical to oblong, curved spermatia 8 × 3 μm, with 2–3-guttules. Perithecia are globose, formed in stroma beneath epidermis, with hardly protruded ostiole, 8-spored, lanceolate to clavate, stipitate asci, 60 × 8 μm, and lanceolate to fusiform, obtuse on both sides, curved, 4-guttules, hyaline ascospores, 13 × 4 μm, with small appendages on both sides (Fuckel et al. 1870). The asexual morph is undetermined. Sequence data is not available for this species.

≡ *Diaporthe cornicola* var. *acuta* Starbäck, Ark. Bot. 5(no. 7): 25 (1905)
Typification details – N/A
Host – *Cornus racemosa* (Cornaceae)
Distribution – North America (USA)
Notes – *Diaporthe cornicola* was found from *Cornus racemosa* in Iowa, USA by Ellis & Holway (1895). The species has scattered or 2–4 valsoid-aggregated perithecia, whitish or gray inside, bases slightly penetrating the wood, with short-cylindrical, perforated ostiola, piercing and slightly raising the epidermis but hardly rising above it, 8-spored, oblong to fusoid asci, 40–45 × 8 μm, oblong, 1-septate, constricted at the septum, obtuse, 4-nucleate, hyaline spores, 10–14 × 3.5–4.5 μm (Ellis & Holway 1895). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe coryli C.M. Tian & Q. Yang, MycoKeys 67: 11 (2020)
Typification details – Holotype, BJFC-S1671; ex-type, CFCC 53083
Host – *Corylus mandshurica* (Betulaceae)
Distribution – Asia (China)
Notes – *Diaporthe coryli* was introduced by Yang et al. (2020). The holotype and the paratype were found from branches of *Corylus mandshurica* in Shaanxi, China (Yang et al. 2020). This species is characterized by conical to spherical, ectostromatic pycnidial conidiomata, with inconspicuous disc, conidiophores reduced to conidiogenous cells, cylindrical, unbranched
conidiogenous cells, fusiform, aseptate, multiguttules, rarely 2-guttules, hyaline alpha conidia, beta conidia not observed. Detailed descriptions and illustrations of this species were given by Yang et al. (2020).

In the phylogenetic tree, this species is closely related to *D. citrichinensis* and *D. ukurunduensis* (Yang et al. 2020). However, *D. coryli* can be distinguished from these two species in having larger alpha conidia (Huang et al. 2013, Gao et al. 2016, Yang et al. 2020).

Typification details – Holotype, BJFC CF2021121; ex-type, CFCC 53986
Host – *Corylus heterophylla* (Betulaceae)
Distribution – Asia (China)

Notes – *Diaporthe corylica* was introduced by Gao et al. (2021), on symptomatic branches and stems of Hazelnut (*Corylus heterophylla*) in Beijing, China. Morphological characters comprise immersed to erumpent, discoid to conical stromata, with buff or orange ectostromatic disc, one central ostiole per disc, enteroblastic, phialidic, cylindrical conidiogenous cells, with fusiform, aseptate, multi-guttulate, hyaline alpha conidia, and subcylindrical, nearly rounded apex, aseptate, multi-guttulate, hyaline gamma conidia. The sexual morph is undetermined. A detailed morphological description, phylogenetic analysis and biological characteristics were provided by Gao et al. (2021).

In the phylogenetic tree of Gao et al. (2021), *D. corylica* formed a monophyletic lineage with high statistical support. *Diaporthe corylica* is morphologically different from *D. coryli*, which was isolated from *Corylus mandshurica*, in having longer and thinner alpha conidia (11.0–16.5 × 2.0–3.5 vs. 11.5–13 × 3–3.5 µm) (Yang et al. 2020, Gao et al. 2021).

Diaporthe crassiuscula Sacc. & Bizz., Michelia 2(no. 7): 378 (1881)

Typification details – N/A
Hosts – *Berberis dealbata* (Berberidaceae), *Mahonia aquifolium* (Berberidaceae)
Distribution – Europe (Italy, The Netherlands)

Notes – *Diaporthe crassiuscula* was introduced by Saccardo (1881). The species was found from *Mahonia aquifolium* in Italy. It is characterized by scattered acervuli, cortical, and black stromatic line, globose perithecia, erumpent ostiole, the apex thickened and obtuse, with fusoid to clavate asci, 80–84 × 13–15 µm apaphysate, biseriate, fusoid, obtuse at both ends, straight, 1-septate, constricted at septum, 4-guttules, hyaline ascospores, 18–20 × 6–7.5 µm. A detailed description of this species is available in Saccardo (1881). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe crataegi Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

= *Pseudovalsala crataegi* (Fuckel) G. Winter, in Cooke, Grevillea 14(no. 70): 48 (1885)

= *Valssaria crataegi* (Fuckel) Mussat, in Saccardo, Syll. fung. (Abellini) 15: 449 (1901)

Typification details – N/A
Hosts – *Crataegus chrysocarpa*, *C. laevigata*, *C. oxyacantha*, *C. ripidophylla*, *Crataegus sp.* (Rosaceae)
Distribution – Europe (Austria, Bulgaria, Denmark, England, France, Germany, Italy, Poland, Sweden, United Kingdom), North America (Canada)

Notes – *Diaporthe crataegi* was introduced by Fuckel (1869). The species was found from *Crataegus oxyacantha* in Germany. It is characterized by 8-spored, elongate to subclavate asci,
88 × 11 µm, and oblong, slightly curved, 1-septate, hyaline ascospores, 14 × 5 µm (Fuckel 1869). The asexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe crataegi* formed a distinct lineage which could not be included in any species complex.

Typification details – Holotype, NY Dearness 1347B

Hosts – *Penstemon antirrhinoides* (Plantaginaceae), *Quercus* sp. (Fagaceae).

Distribution – North America (Canada)

Notes – The species was found on dead branches of *Quercus* sp. in Ontario, Canada. The holotype specimen of Dearness 1347B was first referred to *Diaporthe woolworthii*. However, Ellis & Everhart (1890) compared the specimen with *D. woolworthii* from Peck and found that the Dearness 1347B has larger and more numerous perithecia with long cylindrical ostiole and broader ascospores. Therefore, this species was established as a distinct species. A detailed description of this species was given by Ellis & Everhart (1890). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe crotalariae G.F. Weber, Phytopathology 23: 602 (1933)

Typification details – Ex-type, CBS 162.33

Host – *Crotalaria spectabilis* (Fabaceae)

Distribution – North America (USA)

Notes – *Diaporthe crotalariae* was introduced by Weber (1933). The species was reported as causing stem canker of *Crotalaria spectabilis* in the USA. It is characterized by globose to lenticular, black perithecia, pseudoparenchymatous, embedded instromata between the bark and wood, erumpent beaks tapering, black, with brownish, rounded tip, hairy on the surface, with elongate to clavate, subsessile asci, 34 × 7 µm, biseriate, ellipsoid, obtuse, 2-celled, hyaline ascospores, 9–12 × 2 µm. The asexual morph produced simple or chambered, pseudoparenchymatous pycnidia, 6–10 × 2–3 µm, pycnosporas, 15–27 long µm sporophores, and 16.6–30.94 × 1.8–2.3 µm stylospores. Detailed descriptions of the asexual and sexual morphs for this species were given by Weber (1933). The pathogenicity test was done by Weber (1933).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe crotalariae* clustered with *D. aspalathi* and *D. woodii* with 100% bootstrap support. Here we accept it as a singleton species.

Diaporthe crousii S. Hilário, L. Santos & A. Alves, Mycologia 112(2): 299 (2020)

Typification details – Holotype, AVE-F-3 (a dried culture sporulating on fennel stems); ex-type, MUM 19.29

Hosts – *Eucalyptus globulus* (Myrtaceae), *Vaccinium corymbosum* (Ericaceae)

Distribution – Europe (Portugal)

Notes – *Diaporthe crousii* was introduced by Hilário et al. (2020). The species was found from dieback lesions of *Vaccinium corymbosum* in Portugal. *Diaporthe crousii* was introduced with both morphs of 2-celled ascospores and 1-celled alpha conidia. Detailed descriptions and illustrations of the asexual and sexual morphs for this species were given by Hilário et al. (2020). The pathogenicity test was done by Hilário et al. (2020, 2021b) and Lopes et al. (2021).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe crousii* clustered in the *D. rudis* species complex.

Diaporthe crustosa Sacc. & Roum., Toulouse 3(no. 11): 43 (1881)

= Phomopsis crustosa (Sacc., E. Bommer & M. Rousseau) Traverso, Fl. ital. crypt. (Florence) 2(1): 256 (1906)

Typification details – Holotype, Roumégouère 174
Host – Ilex aquifolium (Aquifoliaceae)
Distribution – Europe (France, Germany, Great Britain, The Netherlands)

Notes – Diaporthe cryptica was introduced by Roumégouère & Saccardo (1881). This species was found from branches of Ilex aquifolium in France. The species is characterized by cortical perithecia, gregarious, globular, with a smooth opening, often exceeding the peritheicum, breaking out, coarsely fusoid to clavate asci, 60 × 12–13 μm, subsessile, obtuse at the apex, and light scarcely or not foveolate, a paraphysate, 8-spored, and terete-fusoid, obtuse on both sides, initially obsolely apiculate, 1-septate, slightly constricted, 4-guttules, hyaline ascospores, 15–17 × 3–3.25 μm. A detailed description of the sexual morph was described and illustrated in Roumégouère & Saccardo (1881). Further details of the asexual morph were given in Traverso (1906). Sequence data is not available for this species.

Diaporthe cryptica Nitschke, Pyrenomyc. Germ. 2: 265 (1870)
= Phoma cryptica (Nitschke) Sacc., Michelia 1(no. 5): 521 (1879)

Typification details – N/A
Hosts – Lonicera caprifolium, L. periclymenum (Caprifoliaceae)
Distribution – Europe (Denmark, France, Great Britain, Germany, Spain, Sweden, Switzerland, The Netherlands), North America (USA).

Notes – Diaporthe cryptica was introduced by Nitschke (1870). The species was found from the bark of two old woody stems, including Lonicera periclymenum in Erdmans near Münster and L. caprifolium in Westphalia, Germany. This species has spermogonia, punctured by a pore at the top, fusiform, obtuse on both sides, straight spermatia, 7–8 × 2 μm, very thinly filiform, variously curved stylospores. The sexual morph is characterized by globose, large, scattered perithecia, clavate, sessile asci, 54 × 7 μm, and fusiform to subcylindrical, obtuse on both sides, straight to slightly curved, 2-celled, 4-guttules, pale ascospores, 12–15 × 3–4 μm. A detailed description of the sexual morph is available in Nitschke (1870), and the asexual morph in Höhn & Litschauer (1906). Sequence data is not available for this species.

Diaporthe cucurbitae (McKeen) Udayanga & Castl., Index Fungorum 513: 1 (2022)

Typification details – Holotype, DAOM 41000; epitype, BPI 892977
Hosts – Arctium sp. (Asteraceae), Citrullus vulgaris, Cucumis melo, Cucumis sativus, Cucumis sp., Luffa acutangula, L. aegyptiaca (Cucurbitaceae)
Distribution – North America (Canada), South America (Venezuela)

Notes – McKeen (1957) described Phomopsis cucurbitae, which was found on cucumber stems in Ontario, Canada. It was reported to cause black rot disease in cucumbers (Garibaldi et al. 2011). Beraha & O’Brien (1979) and Gomes et al. (2013) treated this species as a synonym of D. melonis based on host association. Udayanga et al. (2015) transferred P. cucurbitae to Diaporthe as a distinct species, D. cucurbitae, but it was invalid (Art. 42,1). Rossman et al. (2015) attempted to synonymize P. cucurbitae under Diaporthe, but it later shows as Nom. inval., Art. F.5.1 (Shenzhen) in Indexfungorum. Thus, D. cucurbitae was validated by Udayanga & Castlebury in Index Fungorum (2022).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), the type sequence of *Diaporthe cucurbitae* clustered in the *D. sojae* species complex, while another strain of this species clustered in a different placement but within the *D. sojae* species complex.

Diaporthe culta Sacc. & Speg., Michelia 1(no. 4): 389 (1878)
Typification details – Holotype, PAD, Saccardo, Sept. 1878
Hosts – *Jasminum officinale, Jasminum* sp. (Oleaceae)
Distribution – Europe (Italy, United Kingdom)
Notes – *Diaporthe culta* was introduced by Saccardo (1878). The species was found from *Jasminum officinale* in Italy. *Diaporthe culta* has stromata, with globose and black perithecia, black obsolete circumscribed line, cylindrical ostiole perforating periderm, with cylindrical to fusoid, obtuse asci, 40–50 × 5 μm, aparaphysate, oblong, 1-septate, constricted at the septum, acute on both sides, hyaline ascospores, with 4-guttules. A detailed description of the sexual morph for this species was given by Saccardo (1878). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, CBS H-19687; ex-type, CBS 117499
Host – *Aspalathus linearis* (Fabaceae)
Distribution – Africa (South Africa)
Notes – Rensburg et al. (2006) established *Phomopsis cuppatea* based on its phylogenetic placement. This species was found from *Aspalathus linearis* in South Africa and was reported to produce fusoid to ellipsoidal, apex bluntly rounded, base obtuse to subtruncate, 2- to multi-guttules alpha conidia, while beta and gamma conidia were not observed. The sexual morph is undetermined. Pathogenicity test in Rensburg et al. (2006) indicated that this species is not virulent and only 8.33% of the inoculated plants died. Udayanga et al. (2012b) transferred *P. cuppatea* to *Diaporthe* based on their phylogenetic analyses. This was supported by Gomes et al. (2013).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cuppatea* clustered in the *D. sojae* species complex.

Diaporthe cupulata Berl. & Destrée, Ned. kruidk. Archf, 3 sér.: 238 (1897)
Typification details – N/A
Host – *Populus balsamifera* (Salicaceae)
Distribution – Europe (The Netherlands)
Notes – *Diaporthe cupulata* was introduced by Destrée (1897). The species was found from the dry branches of *Populus balsamifera* in the Netherlands. Saccardo & Sydow (1899a) referred that *D. cupulata* has no obvious stroma, often scattered or subgregarious, cupulate perithecia, with ostiole, 8-spored, clavate, stipitate asci, 45–50 × 10–12 μm, cylindrical to fusoid, straight or curved, pseudouniseptate in the middle, constricted, 4-guttules, hyaline ascospores, 18–20 × 4–5 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, Hole, Nov. 1921
Host – *Mesua ferrea* (Calophyllaceae)
Distribution – Asia (India)
Notes – *Diaporthe curvatispora* was introduced by Wakefield et al. (1922). The species was found from the bark of *Mesua ferrea* in India (Wakefield et al. 1922). The species is characterized by scattered, oval stromata, pustules-elevated, with a few perithecia (3–4) in each stroma, cylindrical, truncate at the apex, sessile or very short-stalked asci, 80–90 × 12 μm, distichous, fusoid, curved, 1-septate, not constricted, inequilateral, hyaline ascospores 28–32 × 4.5–5 μm. A
detailed description with a drawing of the sexual morph for this species is available in Wakefield et al. (1922). The asexual morph is undetermined. Sequence data is not available for this species.

Index Fungorum number: IF900401; Facesoffungi number: FoF14129

Typification details – Holotype, dried cultures of *Ophiodiaporthe cyatheae*, YMJ1364; ex-type, BCRC 34961.

Host – *Cyathea lepifera* (Cyatheaceae)

Distribution – Asia (Taiwan)

Notes – Previously, the species was named *Ophiodiaporthe cyatheae* to introduce a new genus of fungi on *Cyathea lepifera* in Taiwan (Fu et al. 2013). The species was observed from sporulating in PDA and produced sexual morph characters with multiple perithecia embedded polystichously, globose, dark brown to black, with unaggregated or 2–5 aggregated in valsoid configuration, long cylindrical ostioles, oblong to fusoid asci with an apical ring discoid, containing ellipsoid, bicellular, hyaline ascospores, 8–12 × 4–5 µm. The asexual morph produced within aggregated into conidiomata, embedded in stromata as convoluted locules, with terminal conidiogenous cells, 30–40 × 2.5–3 µm, produced globose to subglobose, hyaline, enteroblastically conidia, 6–7.5 µm. Beta conidia were not observed (Fu et al. 2013). However, morphological characteristics of both morphs and phylogenetic analysis of both single gene and combined gene tree in Norphanphoun et al. (2022, Figs 1–7) revealed that *O. cyatheae* should be considered as a species in *Diaporthe*. Hence, we follow their suggestion and synonym *O. cyatheae* under *D. cyatheae*.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cyatheae* clustered in the *D. sojae* species complex (Fig. 1).

Typification details – N/A

Host – *Cytodia oblonga* (Rosaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe cydoniae* was introduced by Passerini (1888). The species was found from the twigs and bark of *Cytodia oblonga* (Cotogno) in Parma, Italy. *Diaporthe cydoniae* has acervuli, cortical parenchymatous, subglobose perithecium, whitish inside, with obtuse ostiole, uniseriate, cylindrical to clavate asci, 100–112 × 12 µm, and oblong to ovate, 1-septate near the middle, constricted at the septum, hyaline ascospores (Passerini 1888). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe cydoniicola Petr., Annls mycol. 13(1): 49 (1915)

Typification details – Holotype, BPI 615993

Host – *Cytodia japonicum* (Rosaceae)

Distribution – Europe (Czech Republic)

Notes – *Diaporthe cydoniicola* was introduced by Petrak (1915). The species was found from *Cytodia japonicum* in the Czech Republic (Petrak 1915). It is characterized by scattered, densely gregarious perithecia, black line, membranaceous to coriaceous, with erumpent and elongate ostiole, fusoid asci, with slightly narrowed on both ends, 30–50 × 6–10 µm, a paraphysate, and fusoid, 2–4-septate, slightly constricted at the median septum, hyaline, 2–4-guttules ascospores, 10–14 × 2–4 µm. A detailed description of the sexual morph of this species was given by Petrak (1915). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, Peck s.n.
Host – *Prunus pensylvanica* (Rosaceae)
Distribution – North America (USA)
Notes – *Diaporthe cylindrospora* was introduced by Peck (1885). The species was found from the dead branches of *Prunus pensylvanica* in New York, USA. Peck (1885) could not detect any distinctly septate spores of *D. cylindrospora*, however, other characters of this species showed that it belongs to *Diaporthe*. A detailed description of the sexual morph for this species was given by Peck (1885). Sequence data is not available for this species.

Typification details – Holotype, PREM 56862; ex-type, CBS 122676 = CMW:22190 = CPC:13180
Distribution – Africa (South Africa), Europe (Italy), South America (Chile)
Notes – *Diaporthe cynaroidis* was identified as a pathogen of king protea (*Protea cynaroides*) in South Africa by Marincowitz et al. (2008). The pathogenicity was done by Luna et al. (2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cynaroidis* clustered in the *D. rudis* species complex and is sister to *D. salicicola*.

Typification details – Holotype, BPI 798526 (*Phoma cytosporella*); epitype of *P. cytosporella* (dried culture), BPI 892459; ex-epitype, FAU461 = CBS 137020; MBT 175960
Hosts – *Citrus grandis*, *Citrus × limonia*, *C. sinensis*, *C. tankan*, *Citrus × paradisi* (Rutaceae), *Vitis vinifera* (Vitaceae)
Distribution – Asia (China), Europe (Italy, Spain), North America (USA, Puerto Rico)
Notes – *Diaporthe cytosporella* was first described as *Phoma cytosporella*. It was found from *Citrus limonia* in Italy. Fisher (1972) considered *P. cytosporella* as the valid name for *Diaporthe citri* based on the chronology of names. Udayanga et al. (2014b) designated the epitype specimen on *Citrus limon* from Spain and indicated that *P. cytosporella* is a distinct species within *Diaporthe* based on multi-gene phylogeny. The species produces distinctive black, branched stromata on PDA when maturity, with ovate to ellipsoidal, aseptate, base subtruncate, 2-guttules or multi-guttules, hyaline alpha conidia, occasionally larger alpha conidia present in culture and on alfalfa stems. Beta and gamma conidia were not observed on alfalfa twigs or in culture. Detailed descriptions and illustrations of the asexual morph for this species were given by Udayanga et al. (2014b).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe cytosporella* clustered in the *D. oncostoma* species complex, and is sister to *D. chamaeropis* with 89% bootstrap support.

Typification details – Holotype, J. F. Brenckle Herb. 1812, Northville
Hosts – *Polygonum emersum* var. *emersum* (Polygonaceae), *Trachycarpus fortunei* (Arecaceae)
Distribution – Europe (United Kingdom), North America (USA)
Notes – *Diaporthe dakotensis* was described by Wehmeyer (1933a). The species was found from stems of *Polygonum emersum* in South Dakota, USA. The sexual morph characters were described in the original publication with clavate ascii, a refractive ring at the apex, 60–70 × 8–10
µm, and fusoid to ellipsoid, 1-septate, 4-guttules, hyaline ascospores, 13–16 × 2.5–4 µm, bristle-like appendage at each end (Wehmeyer 1933a). Sequence data is not available for this species.

Diaporthe decedens (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 25–26: 318 (1871)
- *Allantoporthe tessella* (Pers.) Petr., Hedwigia 62: 289 (1921)
- *Diaporthe tessella* (Pers.) Rehm, Ascomyceten: no. 176 (1873)
- *Engizostoma subscriptum* (Fr.) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 475 (1898)
- *Engizostoma tessellatum* (Pers.) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 475 (1898)
- *Sphaeria decedens* Fr., in Kunze & Schmidt, Mykologische Hefte (Leipzig) 2: 49 (1823)
- *Sphaeria subscripta* (Fr.) Mussat, in Saccardo, Syll. fung. (Abellini) 15: 383 (1901)
- *Sphaeria tessella* Pers., Syn. meth. fung. (Göttingen) 1: 48 (1801)
- *Sphaeria tessella var. cincta* Alb. & Schwein., Conspl. fung. (Leipzig): 23 (1805)
- *Sphaeria tessella var. decedens* Pers., Syn. meth. fung. (Göttingen) 1: 48 (1801)
- *Sphaeria tessella var. decedens* Alb. & Schwein., Conspl. fung. (Leipzig): 23 (1805)
- *Sphaeria tessella B subscripta* Fr., Syst. mycol. (Lundae) 2(2): 393 (1823)
- *Valsa decedens* (Pers.) Cooke, Grevillea 14(no. 70): 54 (1885)
- *Valsa glyptica* Berk. & Curr., Grevillea 4(no. 31): 100 (1876)

Typification details – N/A

Hosts – *Corylus americana*, *C. avellana*, *C. cornuta*, *Corylus* sp. (Betulaceae), *Salix cinerea* (Salicaceae), *Salix* sp. (Salicaceae), *Umbellularia californica* (Lauraceae)

Distribution – Asia (Japan), Europe (Austria, Bulgaria, Denmark, Germany, Poland, Sweden, United Kingdom), North America (Canada, USA), Russia

Notes – Fries (1823) first described this species as *Sphaeria decedens* based on its distinct disc and perithecia were either solitary or gregarious and separately erumpent. The species was found on *Corylus* sp. in Germany. Fuckel (1869) stated that *Diaporthe pyrrhocystis* was synonymous with *S. decedens* and *S. tessera* according to Nitschke. Fuckel (1872) recalled *D. decedens* as a distinct species based on its smaller, appendaged spores and *D. tessera* based on its larger, non-appendaged spores. Detailed description and discussion of *D. decedens* were provided by Wehmeyer (1927).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), two strains of *Diaporthe decedens* formed a distinct clade within *D. decedens* species complex and it is related to *D. coryllica* with 100% bootstrap support.

Diaporthe decorticans (Lib.) Sacc. & Roum., Reliq. Libert 2: no. 88 (1881)
- *Diaporthe patria* Speg., in Saccardo, Michelia 2(no. 7): 250 (1881)
- *Sphaeria decorticans* Lib., Pl. crypt. Arduenna, fasc. (Liège) 7: no. 682 (1841)

Typification details – Holotype, herb. Mus. Par.

Hosts – Ceratocystis fagacearum (Ceratocystis hongkongensis) (Hem觯aceae), Urocyrtospora medicaginis (modeceae), Laurocerasus officinalis (Rosaceae), Malus sieboldii (Rosaceae), Padus avium (Rosaceae), Prunus spp. (Rosaceae), Rhamnus frangula (Rhamnaceae)

Distribution – Asia (Japan), Europe (Austria, Czech Republic, Denmark, France, Germany, Poland, Sweden, Ukraine, United Kingdom), North America (USA), Russia

Notes – The species was introduced by Roumeguère & Saccardo (1881). It was found from Juglans regia in France. Based on the description of its basionym Sphaeronaema decorticans, the morphological species has black, thick, rough, extended spots on the surface of plants, with obtuse, rounded, whitish, widely opened ostiole, and small, elongated, aseptate, obtuse at both ends, hyaline spores (Léveillé 1846). Sequence data is not available for this species.

In the phylogenetic tree of Nophanphoun et al. (2022, Fig. 1), two strains of Diaporthe decorticans clustered in the D. carpini species complex.

Typification details – Holotype, Bommer & Rousseau, Jun. 1888

Hosts – Liriodendron tulipifera, Liriodendron sp. (Magnoliaceae)

Distribution – Europe (Belgium, United Kingdom)

Notes – Diaporthe delitescens was introduced by Bommer & Rousseau (1890). The species was found from the branches of Liriodendron tulipifera in Belgium. Perithecia are globose, 5–15 on a stroma, sometimes irregularly scattered without stroma, white, surrounded by a black line, ostiole not protruding, with claviform asci, 45–57 x 9–10 µm, and elliptical, brefly mucronate, 1-septate, 4-guttules ascospores, 12–15 x 4–5 µm. A detailed description of the sexual morph of this species was given by Bommer & Rousseau (1890). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe delogneana Sacc. & Roum., Michelia 2(no. 8): 594 (1882)

Typification details – N/A

Host – Daphne mezereum (Thymelaeaceae)

Distribution – N/A

Notes – Diaporthe delogneana was introduced by Saccardo (1882b). The species was found from Daphne mezereum (Saccardo 1882b). Diaporthe delogneana is morphologically almost the same as other species in Diaporthe, but it has black-olive perithecia, with a black tortuous line, and fusoid asc with bifoveolatum, light at apex, 45–55 x 8 µm, aparaphysate, 4-guttules ascospores, 12–14 x 3–3.5 µm, with appendages on both sides (Saccardo 1882b). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, MFLU 16-1059

Host – dried seed pods of Delonix regia (Fabaceae)

Distribution – Asia (Thailand)

Notes – The species was introduced by Perera et al. (2020) with both morphological characteristics and phylogenetic analysis. Diaporthe delonicis was found on dried seed pods of Delonix regia in Thailand. The phylogenetic tree of Perera et al. (2020) revealed that this species is closely related D. pescicola, however, it is different in having smaller conidiomata, conidiophores and beta conidia. Moreover, D. delonicis has prominent collarettes in conidiophores and 4-guttules alpha conidia, while D. pescicola has 2-guttules alpha conidia with no report on prominent collarettes in conidiophores (Perera et al. 2020). Sexual morph is undetermined.
In the personal phylogenetic analyses by Norphanphou et al. (2022) (result was not shown) *Diaporthe delonicis* groups with *D. pescicola*, a species in *Diaporthe arecae* species complex. Hence, we placed it as a species member in *Diaporthe arecae* species complex.

= *Phoma demissa* Sacc., Fungi venet. nov. vel. Crit., Sér. 5: 201 (1878)
= *Phoma vulgaris* Sacc., Michelia 1(no. 5): 524 (1879)
= *Phomopsis demissa* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 234 (1906)
Typification details – N/A
Host – *Clematis vitalba* (Ranunculaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe demissa* was introduced by Saccardo (1875). The species was found from the branches of *Clematis vitalba* in Italy, causing rotting woods. It has almost the same characters as other species in *Diaporthe*. Stomata with a black tortuous line, subglobose immersed perithecia, short and cylindrical ostiole, with fusoid to oblong asci, 50 × 8–9 µm, oblong, 1-septate, 3-guttules ascospores, 12–14 × 3.5–3.75 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe denigrata G. Winter, in Kunze, Fung. sel. exs., cent. 4: no. 354 (1880)
Typification details – N/A
Hosts – *Angelica sylvestris*, *Angelica* sp. (Apiaceae), *Daucus carota* (Apiaceae)
Distribution – Europe (Ireland, Switzerland)
Notes – Saccardo (1882a) described this species from the dry stems of *Angelica* sp. in Switzerland. It has stromata with gregarious and immersed perithecia, black line, perforating and punctiform-protruding, 8-spored, clavate to fusoid asci, 46–50 × 5–7 µm, ovate to fusoid, straight, 1-septate, not or scarcely constricted, hyaline ascospores, 8–10 × 3.6–4 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe densa Sacc., Annls mycol. 12(3): 289 (1914)
Typification details – Holotype, Petrak 34 (1913)
Host – *Aesculus hippocastanum* (Sapindaceae)
Distribution – Europe (Czechoslovakia, Germany)
Notes – *Diaporthe densa* was introduced by Saccardo (1914). The species was found from the dead branches of *Aesculus hippocastanum* in Germany (Saccardo 1914). It has dense, gregarious, depressed globose perithecia, stromatal line, with clavate asci, 48–50 × 6 µm, bifoveolatum, aparaphysate, and fusoid, obtuse on both sides, hyaline ascospores (Saccardo 1914). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe desmazieri Niessl ex Sacc. [as ‘desmazierii’], Syll. fung. (Abellini) 1: 656 (1882)
= *Diaporthe desmazieri* var. *melampyri* Sacc., Syll. fung. (Abellini) 1: 657 (1882)
= *Phomopsis denigrata* (Desm.) Traverso, in Lind, Danish Fungi (Copenhagen): 243 (1913)
= *Sphaeria inquilina* Desm., Crypt. Fr. Exs. 2: no. 1766 (1846)
Typification details – N/A
Hosts – *Melampyrum* sp. (Orobanchaceae), *Prunella sp.*, *Stachys palustris* (Lamiaceae)
Distribution – Europe (Austria, Belgium, Germany, Great Britain, Italy, Sweden, Ukraine), North America (USA)
Notes – *Diaporthe desmazieri* was introduced by Saccardo (1882a) as a synonym of *Sphaeria inquilina*. The species was found from the stems of *Prunella* in Dinmore, Great Britain. This species is characterized by perithecia with rufescent-black surface, immersed, gregarious, globular, long spiniform and erect ostioles, sub-thickened base, clavate asci, subsessile, 40–50 × 6–7 µm, narrowly fusoid spores, 1-septate, 4-nucleated, subcontracted, straight, 13–16 × 3 µm. A detailed
description of the sexual morph is available in Saccardo (1882a) and the asexual morph is available in Traverso (1906). Darbyshire et al. (2014) referred that *D. desmazieri* is a fungal plant pathogen that causes stem blight on *Stachys palustris* in Great Britain.

Diaporthe desmodiana (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

≡ *Sphaeria desmodiana* Cooke & Ellis, Grevillea 6(no. 39): 93 (1878)

Typification details – Holotype, Ellis 2653

Host – *Desmodium* sp. (Fabaceae)

Distribution – North America (USA)

Notes – *Sphaeria desmodiana* was synonymized under *Diaporthe desmodiana* by Saccardo (1882a). The species was found from stems of *Desmodium* sp. in New Jersey, USA. It has semi-immersed perithecium, with erumpent, obtuse and black ostiole, clavate ascii, lanceolate, quadrinucleate, hyaline ascospores, 18 long µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe desmodii (Peck) Sacc., Syll. fung. (Abellini) 1: 691 (1882)

Typification details – Holotype, Peck s.n.

Host – *Desmodium* sp. (Fabaceae)

Distribution – North America (USA)

Notes – *Diaporthe desmodii* was described as *Sphaeria desmodii* by Peck (1873). The species was found from dead stems of *Desmodium* sp. in New York, USA. The species comprises perithecia which are scattered or seriately placed under plant epidermis, with acute and black ostiole pierced the epidermis, clavate asci, biseriate, fusiform, 4-guttules, hyaline ascospores, 9–10 long µm (Peck 1873). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe destruens (Harter) Hirooka, Minosh. & Rossmann, Index Fungorum 429: 1 (2020)

≡ *Plenodomus destruens* Harter, Phytopathology 3(4): 245 (1913)

Typification details – Holotype, BPI 361920

Hosts – *Illigera orbiculata* (Hernandiaceae), *Ipomoea batatas* (Convolvulaceae)

Distribution – Asia (China, Japan, Korea, Taiwan), North America (USA), Oceania (New Zealand, Niue), South America (Argentina, Brazil, Peru).

Notes – *Plenodomus destruens* was found from stem pieces of *Ipomoea batatas* in Virginia, USA (Harter 1913). However, it was synonymized as *Diaporthe destruens* by Hirooka et al. (2020). This species is characterized by loosely gregarious, black pycnidia, with shape, size and structure vary variable, papillate, oblong or ovoid, rounded on both sides, hyaline spore, coarsely 2-guttules, simple sporophores, hyaline, short, sometimes inconspicuous. More morphological details can be seen in Harter (1913) and Boerema et al. (1996). *Diaporthe destruens* is pathogenic causing several diseases in sweet potatoes, including foot rot disease (Boerema et al. 1996, Fujiwara et al. 2021, Maeda et al. 2022), stem blight and storage tuber rot (Gai et al. 2016). Later, it was also found as an endophytic fungus from the stem of the plant *Illigera orbiculata* in Yunnan, China (Zhang et al. 2022).

Diaporthe detrusa (Kunze) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870)

≡ *Valsa detrusa* (Fr.) Fr., Summa veg. Scand., Sectio Post. (Stockholm): 411 (1849)

≡ *Sphaeria detrusa* Fr., in Kunze & Schmidt, Mykologische Hefte (Leipzig) 2: 43 (1823)

Typification details – N/A
Hosts – *Berberis jamaicana*, *B. microphylla*, *Berberis* sp., *B. spathulate*, *B. veitchii*, *B. vulgaris* (Berberidaceae), *Hydrangea paniculata* (Hydrangeaceae), × *Mahoberberis neubertii* (Berberidaceae), *Mahonia aquifolium*, *Mahonia* sp. (Berberidaceae)

Distribution – Asia (Armenia, Japan), Europe (Austria, Denmark, Germany, Poland, Sweden, United Kingdom, Ukraine), North America (USA)

Notes – *Sphaeria detrusa* was synonymized under *Diaporthe detrusa* by Fuckel (1870). The species was found from dead branches of *Berberis vulgaris* (Kunze & Schmidt 1823). It is characterized by 8-spored, oblong, sessile asci, 58 × 9 µm, subdistichous, ovate to oblong, 1-sepate, hyaline ascospores, 13 × 5 µm. Spermia are narrowly filiform (Fuckel 1870). Phylogenetic analyses indicated that it is a distinct species in *Diaporthe* (Gomes et al. 2013, Guarnaccia et al. 2018, Norphanphoun et al. 2022).

In the phylogenetic tree Norphanphoun et al. (2022, Fig. 1), *D. detrusa* clustered in the *D. carpini* species complex (Fig. 1).

Diaporthe dichaenoides (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 616 (1882)

≡ *Melogramma dichaenoides* Berk. & M.A. Curtis, Grevillea 4(no. 31): 98 (1876)

Typification details – Holotype, Ravenel 4662

Host – *Quercus* sp. (Fagaceae)

Distribution – North America (USA)

Notes – This species was found from *Quercus* sp. in Alabama, USA, and was first described as *Melogramma dichaenoides*. However, it was synonymized under *Diaporthe dichaenoides* by Saccardo (1882a). The species is characterized by spots bursting out transversely, generally orbicular, very rough, with conical rugose pulverule, oblong ascospores, occasionally narrower towards the lower end (Berkeley 1876). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, 1889

Host – *Dyckia* sp. (Bromeliaceae)

Distribution – South America (Argentine)

Notes – *Diaporthe dickiae* was introduced by Spegazzini (1898). The species was found in rotten leaves of *Dyckia* sp. in Buenos Aires, Argentine. *Diaporthe dickiae* has black stromata, embedded, globose, thin, membranous perithecia, carbonaceous ostiole, fusoid to clavate asci, 50–55 × 8 µm, aparaphysate, fusoid to biconical to elliptical, obtuse on both sides, 1-sepate, constricted on the middle, 2-guttules, hyaline ascospores, 10–13 × 3–4 µm. A detailed description of the sexual morph was given by Spegazzini (1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe didymelloides Sacc. & Malbr., in Saccardo, Michelia 2(no. 8): 594 (1882)

Typification details – Holotype, Elbeuf (M.n. 269)

Host – *Lonicera* sp. (Caprifoliaceae)

Distribution – Europe (France)

Notes – *Diaporthe didymelloides* was introduced by Saccardo (1882b). This species was found from *Lonicera* sp. in France. It has densely gregarious, immersed, globose-depressed perithecia, without stromatic line or obsolete, minute ostiole, fusoid to clavate asci, 55–60 × 7–8 µm, aparaphysate, fusoid, 1-sepate, scarcely constricted, 4-guttules, hyaline ascospores, 14–15 × 4 µm (see Saccardo 1882b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe difficilior Kunze ex Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Typification details – N/A

Host – *Prunus spinosa* (Rosaceae)
Distribution – Europe (Switzerland)

Notes – *Diaporthe difficilior* was found from *Prunus spinosa* in Zurich, Switzerland and introduced by Saccardo (1882a). The species has globose perithecia, with subconvergent ostiole, fusoid to clavate asci, 90–110 × 10–14 μm, filiform paraphyses, fusoid, 1-septate, barely constricted, hyaline ascospores, 20–22 × 5–6 μm. A detailed description of the sexual morph was given by Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

= *Phoma diospyri* Sacc., Michelia 1(no. 2): 258 (1878)

= *Phomopsis diospyri* (Sacc.) Traverso & Spessa, Bolm Soc. broteriana, Coimbra, sér. 1 25: 123 (1910)

Typification details – Holotype, PAD, Saccardo, May 1877 (Saccardo, Myc. ven. 1209)

(Based on *Phoma diospyri*)

Host – *Diospyros kaki, D. lotus* (Ebenaceae)

Distribution – Europe (Italy)

Notes – In the phylogenetic tree of Gomes et al. (2013), *Phomopsis diospyri* (CBS 287.56) clustered with *Diaporthe foeniculacea*, but no synonymization was performed between them. Crous et al. (2013) used the name *D. foeniculacea* for the strain CBS 287.56. However, Index Fungorum (2023) treated *D. diospyri*, *D. foeniculacea*, and *P. diospyri* as distinct species. As *Phomopsis* has synonymized under *Diaporthe* (Rossman et al. 2015), *Phomopsis diospyri* should be a synonym of *D. diospyri*. Based solely on phylogenetic analysis (Gomes et al. 2013), *D. foeniculacea* should be synonymized under *D. diospyri* (as *P. diospyri*). However, Udayanga et al. (2014b) observed three isotype specimens of *D. foeniculacea* and determined that they belong to the genus *Phyllosticta* Pers. (syn. *Guignardia* Viala & Ravaz). Therefore, *D. foeniculacea* should be excluded from *Diaporthe*, and only *Diaporthe diospyri* should be retained.

Diaporthe diospyricola Crous, Persoonia 31: 255 (2013)

Typification details – Holotype, CBS H-21450; ex-type, CPC 21170, 21169 = CBS 136552

Host – *Diospyros whyteana* (Ebenaceae)

Distribution – African (South Africa)

Notes – *Diaporthe diospyricola* was introduced by Crous et al. (2013). The species was isolated from leaf spots of *Diospyros whyteana* in South Africa. It produces conidiomata pycnidial on PNA, exuding creamy conidial droplets from central ostioles, with alpha and beta conidia. Gamma conidia were not observed. A detailed description of the asexual morph for this species was given by Crous et al. (2013).

Based only on ITS sequence data of Dissanayake et al. (2017b), *D. diospyricola* formed a lineage sister to *D. baccae, D. chamaeropis, D. cytopsporella, D. foeniculina, D. ravenlica*, and *D. rhusicola* with high bootstrap support. Most of those species are a member of *D. oncostoma* species complex in the analyses of Norphanphoun et al. (2022, Figs 1–2), except *D. diospyricola* and *D. rhusicola* which were not included in their analysis. However, we could not assign *D. diospyricola* as a member of *D. oncostoma* species complex until more gene regions are available to confirm its placement.

Typification details – Holotype, BJFC CF202212147; ex-type, CFCC 58820; other living culture, CFCC 58821

Host – *Diospyros kaki* (Ebenaceae)

Distribution – Asia (China)

Notes – The species was introduced by Bai et al. (2023). It was found from branches of *Diospyros kaki*, in Beijing, China. This is the same host on which *D. diospyricola* was also found.
However, the nucleotide pairwise comparison of ITS sequence indicated that *D. diospyricola* differs from *D. diospyricola* in 20/460 base pairs. Other gene regions are currently lacking for *D. diospyricola*. Morphologically, *D. diospyrina* has longer alpha conidia than those of *D. diospyricola* (7.5–9.0 μm vs. 5.5–7.0 μm) (Crous et al. 2013, Bai et al. 2023). Therefore, Bai et al. (2023) introduced *D. diospyrina* as a new species.

Diaporthe dircae Ellis & Everh., Proc. Acad. nat. Sci. Philad. 45: 448 (1894)
- Typification details – Holotype, NY, Dearness 2992
- Host – *Dirca palustris* (Thymelaeaceae)
- Distribution – North America (Canada)

Notes – *Diaporthe dircae* was introduced by Ellis & Everhart (1893a). The species was found in dead decaying branches of *Dirca palustris* in Ontario, Canada. *Diaporthe dircae* does not have a black circumscribing line around each separate group of perithecium. However, it has a continuous black stratum running along for some inches in extent, in the wood beneath the perithecium (Ellis & Everhart 1893a). Asci are clavate to cylindrical, 50–60 × 6–7 μm, paraphysate, with biseriate, oblong to fusoid, straight, 4-nucleate, hyaline ascospores, 11–13 × 2.5–3 μm. A detailed description of the sexual morph was given by Ellis & Everhart (1893a). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – Holotype, ZJUD89H; ex-type, ZJUD89 = CGMCC 3.17255 = ICMP 20662
- Hosts – *Camellia sinensis* (Theaceae), *Citrus sinensis*, *Citrus* sp., *C. unshiu* (Rutaceae)
- Distribution – Asia (China)

Notes – *Diaporthe discoidispora* was found as an endophyte on healthy twigs of *Citrus unshiu* in China (Huang et al. 2015). It was established based on its phylogenetic placement within *Diaporthe* and sister to *D. citriasiana* (Huang et al. 2015). Gao et al. (2016) isolated this species from non-symptomatic *Camellia sinensis*. Yang et al. (2018a) indicated that *D. discoidispora* was closely related to *D. cinnamomi*. The asexual morph of *D. discoidispora* produces pynidia on PDA, with abundant, ellipsoidal or clavate, base subtruncate, aseptate, hyaline, 2-guttules alpha conidia, and filiform or hamate, aseptate, hyaline beta conidia. Detailed descriptions and illustrations of the asexual morph were given by Huang et al. (2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe discoidispora* clustered in the *D. sojae* species complex.

Diaporthe disputata Sacc., E. Bommer & M. Rousseau, Bull. Soc. R. Bot. Belg. 29(no. 1): 251 (1890)
- Typification details – Holotype, Bommer & Rousseau, Jun. 1890
- Hosts – *Juniperus sabina* (Cupressaceae)
- Distribution – Europe (Belgium)

Notes – *Diaporthe disputata* was found from dead branches of *Juniperus sabina* in Belgium and introduced by Bommer & Rousseau (1890). The species is characterized by pale stromata which are bordered by a black flexuous line, scattered and globose perithecium, narrowly circumscribed by a black line, obtuse and usually short ostiole, piercing the epidermis, but not protruding, clavate to subfusoid asci, 48 × 6–10 μm, and ellipsoid, lanceolate, 1-septate, slightly or not constricted, hyaline ascospores, 12–17 × 5–4 μm, with 4-guttules, and briefly mucronate. A detailed description of the sexual morph is available in Bommer & Rousseau (1890). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe disseminata Sacc., Michelia 2(no. 6): 61 (1880)
- Typification details – N/A
- Host – *Ailanthus glandulosa* (Simaroubaceae)
Distribution – North America (USA)

Notes – Diaporthe disseminata was introduced by Saccardo (1880). The species was found from Ailanthus glandulosa. It has stromata without black circumscribing line, scattered and globose perithecia, partially buried in the wood, ostiolate, cylindrical to fusoid asci, 80–90 × 12–14 µm, bifoveolate at apex, a paraphysate, and biconical to fusoid, obtuse at both ends, constricted, 4-guttules, hyaline ascospores, 15–20 × 5–6 µm. A detailed description of the sexual morph was given by Saccardo (1880). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe dolosa Sacc. & Roum., Revue mycol., Toulouse 5(no. 20): 234 (1883)
Typification details – Roum., F. Gallici-2689
Host – Robinia pseudoacacia (Fabaceae)
Distribution – N/A
Notes – Diaporthe dolosa was found from Robinia pseudoacacia and introduced by Saccardo & Roumeuguère (1883). This species has hardly manifested stromata, gregarious, dense, immersed perithecia, with very short, obtuse ostiole, 8-spored, fusoid asci, 60–70 × 10–12 µm, and distichous, fusoid, obtuse on both ends, 1-septate, constricted in the middle, 4-guttules, hyaline ascospores, 10–12 × 4 µm. A detailed description was given in Saccardo & Roumeuguère (1883). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe dorycnea Fabre [as ‘dorycnii’], Annls Sci. Nat., Bot., sér. 6 9: 75 (1879)
Typification details – N/A
Host – Dorycnium suffruticosum (Fabaceae)
Distribution – Europe (France)
Notes – Diaporthe dorycnea was introduced by Fabre (1879) from dead branches of Dorycnium suffruticosum in Gaul, France. It is characterized by lanceolate asci, 60–70 × 14–16 µm, oblong, constricted at the middle, 1-septate, with 1-large-guttules, hyaline ascospores, 15–27 × 4–6 µm (Fabre 1879). A detailed morphological description of the species is available in Fabre (1879) and Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe dorycni sp. (Mont.) Sacc., Syll. fung. (Abellini) 1: 664 (1882)
≡ Sphaerella dorycni (Mont.) Ces. & De Not., Comm. Soc. crittog. Ital. 1(fasc. 4): 237 (1863)
Typification details – N/A
Hosts – Dorycnium hirsutum, D. suffruticosum (Fabaceae)
Distribution – Europe (France, Italy)
Notes – Sphaeria dorycni was synonymized under Diaporthe dorycni by Saccardo (1882a). The species was found from Dorycnium suffruticosum in France. Diaporthe dorycni has globose perithecium, with ostiole, cylindrical to clavate asci, and oblong, 2-guttules, hyaline ascospores (Montagne 1860, Saccardo 1882a). The asexual morph is undetermined. Dissanayake et al. (2017b) introduced a new species under the same name D. dorycni with sequence data, however, their new species was later treated with a new name, D. forlicesenica by Bundhun et al. (2021). Thus, sequence data is not available for D. dorycni.

Typification details – Holotype, BRIP 66524; ex-type, CBS 146453
Host – Macadamia sp. (Proteaceae)
Distribution – Africa (South Africa)
Notes – Diaporthe drenthii was isolated from the husk rot of Macadamia sp. in KwaZulu-Natal, South Africa (Wrona et al. 2020). This species is characterized by pycnidial conidiomata on
OMA, with densely aggregated, hyaline, smooth conidiophores, phialidic, cylindrical, straight or flexuous, hyaline conidiogenous cells, produced fusiform, acute at both ends, aseptate, hyaline alpha conidia, and sparse, curved beta conidia. Detailed descriptions and illustrations of this species were given in Wrona et al. (2020). Pathogenicity test confirmed that *D. drenthii* is a pathogen causing Phomopsis husk rot on macadamia (Wrona et al. 2020). In the phylogenetic tree of Wrona et al. (2020), *D. drenthii* grouped with *D. arecae*, *D. cercidis*, *D. pterocarpicola*, and *D. searlei*. However, *D. drenthii* was distinguished by the differences in the *tub2* sequence.

Diaporthe dryophila Sacc. & P. Syd., Syll. fung. (Abellini) 14(1): 550 (1899)

Typification details – Holotype, LPS, Spegazzini, Mar. 1882

Host – *Drimys winteri* (Winteraceae)

Distribution – South America (Argentina)

Notes – This species was first described as *Diaporthe winteri* Speg. from *Drimys winteri* in Tierra del Fuego, Argentina. However, it was renamed as *D. dryophila* by Saccardo & Sydow (1899b). The species has not clear stromata, densely aggregate, coriaceous to membranaceous, black perithecia, carbonaceous ostiole, scarcely papillate, 8-spores, fusoid to clavate asci, bifoveolate, 60–65 × 8–9 µm, aparpaphysate, and elliptical, 1-septate, constricted in the middle, 2-guttules, hyaline ascospores, 12–14 × 3.5–5 µm. The asexual morph is undetermined (Spegazzini 1888). Sequence data is not available for this species.

Diaporthe dryophila (Niessl) Sacc., Syll. fung. (Abellini) 1: 615 (1882)

≡ *Cryptospora dryophila* Niessl, Fungi europ. exsicc., Edn nova, Ser. sec., Cent. 20: no. 1941 (1875)

Typification details – N/A

Hosts – *Quercus palustris*, *Q. pedunculata*, *Quercus* sp. (Fagaceae)

Distribution – North America (USA)

Notes – *Cryptospora dryophila* was introduced by Rabenhorst (1875), and later was synonymized under *Diaporthe dryophila* by Saccardo (1882a). The species was found from *Quercus* sp. This species is characterized aggregate, ovoid perithecia, with protruding ostiole, conoid at apex, clavate, sessile asci, 70–80 × 10 µm, distichous, fusoid to oblong, slightly curved, 1-septate, constricted in the middle septum, 2-large-guttules, hyaline ascospores, 16–19 × 5 µm. Conidia are lanceolate to fusiform, straight or curved, hyaline, 16–20 × 3 µm (Saccardo 1882a). Sequence data is not available for this species.

Diaporthe dubia Nitschke, Pyrenomyc. Germ. 2: 316 (1870)

Typification details – Holotype, Coll. Beokbaus.

Hosts: *Acer campestre*, *A. leucoderme*, *A. negundo*, *A. nigrum*, *A. palatum*, *A. palmatum* subsp. *palatum*, *A. palmatum* var. *palatum*, *A. rubrum*, *A. saccharinum*, *A. saccharum*, *Acer* sp. (Sapindaceae), *Fraxinus* sp. (Oleaceae)

Distribution – Asia (Japan), Europe (Belgium, Denmark, Germany), North America (Canada, USA)

Notes – *Diaporthe dubia* was found from *Acer negundo* in Höxter, Germany and introduced by Nitschke (1870). This species has stromata, with globose peritheciun, 3–5 together, buried in the uppermost layer of bark, short neck, small ostioles, 8-spored, clavate to oblong asci, 62–72 × 72 µm, and subdistichous, oblong, obtuse on both sides, straight, 1-septate, constricted at the septum, 2–4-guttules, hyaline ascospores, 16–18 × 6 µm. The detailed description of the sexual morph is available in Nitschke (1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe dulcamarae Nitschke, Pyrenomyc. Germ. 2: 250 (1870)

≡ *Diaporthe sarothamni* var. *dulcamarae* (Nitschke) Wehm., Monogr. Gen. *Diaporthe*

= Phoma dulcamarae (Nitschke) Sacc., Michelia 2(no. 7): 272 (1881)
= Phomopsis dulcamarae (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 247 (1906)
= Phyllosticta dulcamarae Sacc., Michelia 1(no. 2): 160 (1878)

Typification details – Holotype, PAD, Saccardo, Aug. 1873 (from Phyllosticta dulcamarae)
Host – Solanum dulcamara (Solanaceae)

Distribution – Europe (Austria, Belgium, France, Finland, Germany, Great Britain, Italy, Poland, Sweden)

Notes – Diaporthe dulcamarae was introduced by Nitschke (1870). This species was found on dead stalks of Solanum dulcamara in Neumark, Germany. This species has stromata, depressed convex spermatonia, that are conical, unilocular, embedded in the stroma, minute perithecia, globose, generally scattered loosely and without order, slightly elongated ostiole, from the conical-dilated cylindrical base, clavate to oblong asci, sessile, 60–80 × 10–12 µm, and fusiform, obtuse, 4-celled, not constricted to rarely slightly torulose, hyaline ascospores, 16–20 × 4–5 µm. A detailed description of the sexual morph is available in Nitschke (1870), and further details of the asexual morph was reported by Traverso (1906). Sequence data is not available for this species.

Typification details – Holotype, VTCC 930005; ex-type, KCSR1812.8 = VTCC 930005
Host – Durio zibethinus (Malvaceae)

Distribution – Asia (Vietnam)

Notes – Diaporthe durionigena was introduced by Crous et al. (2020a). This species was found on branches of Durio zibethinus with dieback symptoms. Crous et al. (2021) validated D. durionigena from Crous et al. (2020a) by adding the holotype details as preserved as metabolically inactive culture. Diaporthe durionigena has globose pycnidial conidiomata, with six ostiolar necks arise from a conidioma, with rare, ellipsoidal, aseptate, hyaline, 2-guttules alpha conidia, and abundant, aseptate, hamate, hyaline beta conidia (Crous et al. 2020a). The sexual morph is undetermined.

Typification details – Holotype, LPS, Spegazzini, 1889
Host – Dyckia sp. (Bromeliaceae)

Distribution – South America (Argentina)

Notes – Diaporthe dyckiae was introduced by Spegazzini (1898). It was found on rotten leaves of Dyckia sp. in Buenos Aires, Argentina. The species is characterized by immersed perithecia, with ostiole, fusoid to clavate asci, 50–55 × 8 µm, aparaphysate, fusoid to biconic-ellipsoidal, obtuse on both sides, 1-septate, constricted at the middle, 2-guttules, hyaline, 10–13 × 3–4 µm. A detailed description of this species was provided in Spegazzini (1898). Sequence data is not available for this species.

Diaporthe eburensis Sacc., Michelia 2(no. 6): 60 (1880)

Typification details – N/A
Host – Leucanthemum vulgare (Asteraceae)

Distribution – Europe (France), North America (USA)

Notes – Diaporthe eburensis was introduced by Saccardo (1880) and was found from Leucanthemum vulgare in France. The species has stromata blackening the surface of the stem, the black zone below is not limited, densely gregarious, immersed perithecia, short conoid ostiole, fusoid, bifoveolate at apex asci, 70 × 10–11 µm, aparaphysate, fusoid, 1 constricted septum, rarely 3-septate, 4-guttules ascospores 15–16 × 4 µm. A detailed description of the sexual morph was given
by Saccardo (1880). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe elaeagni Rehm, in Saccardo & Sydow, Syll. fung. (Abellini) 14(1): 546 (1899)
Typification details – Holotype, Sydow s.n.
Hosts – *Elaeagnus argentea, E. commutata, Elaeagnus* sp. (Elaeagnaceae)
Distribution – Europe (Germany, The Netherlands), North America (USA)
Notes – *Diaporthe elaeagni* was introduced by Saccardo & Sydow (1899b). The species was found from corticate branches of *Elaeagnus argentea* in Germany (Saccardo & Sydow 1899b). Stromata without limited black line, with 6–8 gregarious perithecia in a disc or joined together, piercing the bark, fusiform ascii, 50 × 9 µm, and fusiform, 1-septate, constricted in the middle, 2-guttules in each cell, hyaline ascospores, 12–14 × 3.5 µm (Saccardo & Sydow 1899b). The asexual morph produces spindle-shaped beta conidia, and rarely observed fusoid to ellipsoidal alpha conidia (Gomes et al. 2013). A detailed description of the sexual morph was given by Saccardo & Sydow (1899b) and the asexual morph with illustration by Gomes et al. (2013). Sequence data is available for this species (Gomes et al. 2013).

Typification details – Holotype, HMAS 247089; ex-type, CGMCC 3.18287 = LC 4802
Host – *Elaeagnus glabra* (Elaeagnaceae)
Distribution – Asia (China)
Notes – *Diaporthe elaeagni-glabrae* was found from the leaves of *Elaeagnus glabra* in China and introduced based on its phylogenetic placement by Gao et al. (2017). The species produces conidiomata on PDA, with spiral conidial cirri extruding from ostioles, with fusiform or oval, hyaline, usually 2-guttules alpha conidia, and filiform, curved, base truncate, hyaline beta conidia. *Diaporthe elaeagni-glabrae* differs from other species recorded from *Elaeagnus* in having long alpha conidia (Gao et al. 2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe elaeagni-glabrae* clustered in the *D. oncostoma* species complex.

Diaporthe elephantina Cooke & Harkn., Grevillea 14(no. 69): 8 (1885)
Typification details – Holotype, Harkness 2499; Harkness 2130
Host – *Geranium* sp., *G. zonale*, (Geraniaceae)
Distribution – North America (USA)
Notes – *Diaporthe elephantina* was introduced by Cooke & Harkness (1885). The species was found from stems of *Geranium* sp. in California, USA. It has roll-shaped pustules, rarely scattered, perithecia embedded in the bark, or attached to the wood, with cylindrical, elongated, thin, curved, black ostiole, 8-spored, clavate ascii, lanceolate, 4-nucleate, later 1-septate, hyaline spores, 12 × 3.5 µm (Cooke & Harkness 1885). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HKAS 107535; ex-type, CGMCC 3.20099 = GZCC 19-0231
Host – On decaying branch and woody
Distribution – Asia (China)
Notes – This species is saprobic on a decaying branch and woody, and is only known from its holotype and paratype specimens (Dissanayake et al. 2020). The species has scattered on dead twigs, globose to irregular, black ascomata, with 1–3-septate, cylindrical, obtuse ends, hyaline paraphyses, extending above conidiophores, unitunicate, 8-spored, sessile, elongate to clavate asci, and elongated to elliptical, 2-celled, often 4-guttules, hyaline ascospores. A detailed description of sexual morph was provided by Dissanayake et al. (2020). The asexual morph is not observed.
Phylogenetic analysis demonstrated that *D. ellipsospora* formed an independent clade and sister to *D. aquatica* (Dissanayake et al. 2020). However, *D. ellipsospora* can be distinguished from *D. aquatica* as the latter has long necks up to 2250 µm (Hu et al. 2012, Dissanayake et al. 2020).

Typification details – Holotype, ZHKUCC 20-0012; ex-type, ZHKUCC 20-0012
Host – *Citrus grandis* cv. Tomentosa (Rutaceae)
Distribution – Asia (China)
Notes – *Diaporthe endocitricola* was introduced based on morphological characters and multigene analysis (Dong et al. 2021a). This species was isolated as an endophyte from *Citrus grandis* cv. Tomentosa fruits in China. *Diaporthe endocitricola* produced polymorphic conidia on PDA including cylindrical to ellipsoid, aseptate, hyaline, multiguttules alpha conidia, filiform, aseptate, hyaline beta conidia, and fusiform, hyaline, multiguttules gamma conidia (Dong et al. 2021a). The sexual morph is undetermined.

Typification details – Holotype, CBS H-21107; ex-type, LGMF 916 = CPC 20292 = CBS 133811
Hosts – *Citrus limon*, *Citrus* sp., *C. unshiu* (Rutaceae), *Glycine max* (Fabaceae), *Maytenus ilicifolia* (Celastraceae), *Schinus terebinthifolius* (Anacardiaceae)
Distribution – Asia (China), South America (Brazil)
Notes – *Diaporthe endophytica* was introduced by Gomes et al. (2013). The species was isolated as an endophyte from the leaves of *Schinus terebinthifolius* in Brazil. It is phylogenetically related to *D. phaseoloru* (Gomes et al. 2013). The culture characteristics were provided by Gomes et al. (2013). Santos et al. (2016) isolated this species from medicinal plants *Maytenus ilicifolia* and *Schinus terebinthifolius*. They reported its inhibitory effect against *Phyllosticta citricarpa* (a pathogen causing citrus black spot disease) in vitro and detached fruits.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe endophytica* clustered in the *D. sojae* species complex.

Diaporthe enteroleuca (Fr.) Sacc., Syll. fung. (Abellini) 1: 612 (1882)
≡ *Sphaeria enteroleuca* Fr., Syst. mycol. (Lundae) 2(2): 381 (1823)
≡ *Valsa enteroleuca* (Fr.) Curr. ex Sacc., Syll. fung. (Abellini) 1: 612 (1882)
Typification details – N/A
Host – *Robinia* sp. (Fabaceae)
Distribution – Europe (Gaul, Great Britain, Sweden), North America (USA)
Notes – *Diaporthe enteroleuca* was found from an unidentified plant. The basionym of this species is *Sphaeria enteroleuca* which is a confused species (Wehmeyer 1993b). Saccardo (1882a) treated *S. enteroleuca* and *Valsa enteroleuca* as synonyms of *D. enteroleuca*. However, Wehmeyer (1993b) reported that *D. enteroleuca* is a synonym of *D. oncostoma*. While Index Fungorum (2023) listed *D. enteroleuca* as a distinct species in *Diaporthe*. Thus, molecular analysis is needed to confirm the status of this species. The sexual morph of this species has white stromata, with a black circumscribing line, minute perithecia, ostiolate, clavate, short-stalked asci, and distichous, fusoid, curved, 1-septate, constricted, 4-nucleate ascospores, 15–17 µm long (Saccardo 1882a).

Diaporthe epilobii Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]
Typification details – Holotype, Morthier s.n.
Host – *Epilobium* sp. (Onagraceae)
Distribution – Europe (Switzerland)
Notes – The species was introduced by Fuckel (1870) from dry stalks of *Epilobium* sp. in Switzerland. *Diaporthe epilobii* has subcortical, dark stromata, perithecia nestling under the bark,
small and prominent ostiole, cylindrical ascii, 70 × 5 μm, and oblong to ovate, 1-septate, slightly attenuated on both sides, 4-guttules, hyaline ascospores, 8–10 × 5 μm (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe epimicta Ellis & Everh., N. Amer. Pyren. (Newfield): 439 (1892)
Typification details – Holotype, NY, Ellis & Everhart s.n.; NY, Meschutt s.n.
Host – *Ilex verticillata* (Aquifoliaceae)
Distribution – North America (USA)
Notes – *Diaporthe epimicta* was introduced by Ellis & Everhart (1892). The species was found from dead stems of *Ilex verticillata* in New Jersey, USA. It is characterized by scattered stromata, with a faint circumscribing line, 6–10 perithecia in a stroma, short neck, ostiole erumpent in a black disk surrounded by the ruptured epidermis, clavate to cylindrical ascii, 50 × 8 μm, biseriate, fusoid, 3–4-nucleate, becoming 1-septate ascospores, 12 × 8 μm, bristle-like appendage at each end about half as long as the sporidium. The asexual morph is undetermined (Ellis & Everhart 1892). Sequence data is not available for this species.

Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)
 = *Chorostate melaena* Rehm, Annls mycol. 11(2): 152 (1913)
 = *Diaporthe alleghaniensis* Arnold, Canadian Journal of Botany 45:787 (1967)
 = *Diaporthe alnea* Fuckel, Fungi rhenani exsic., suppl., fasc. 5: no. 1988 (1867)
 = *Diaporthe badhamii* (Curr.) Sacc. [as ‘badhami’], Syll. fung. (Abellini) 1: 635 (1882)
 = *Diaporthe bicincta* (Cooke and Peck) Sacc., Sylloge fungorum (Abellini) 1:622 (1882)
 = *Diaporthe brachyceras* Sacc., Syll. fung. (Abellini) 1: 643 (1882)
 = *Diaporthe brachycceras var. brachyceras* Sacc., Syll. fung. (Abellini) 1: 643 (1882)
 = *Diaporthe brachyceras var. viburni* Rehm, Fl. Bohem. Morav. exs., ser. II., Pilze: no. 679 (1913)
 = *Diaporthe bricancrria* Sakalidis and Medina-Mora, Phytopathology (2020)
 = *Diaporthe camptothecica* Tian and Yang, MycoKeys 132: 595 (2017)
 = *Diaporthe castaneae-mollisima* Udayanga, Crous and Hyde, Fungal Diversity 56: 166 (2012)
 = *Diaporthe celastrina* (Ellis and Barthol), The Journal of Mycology 8: 173 (1902)
 = *Diaporthe celeris* Guarnaccia, Woodhall and Crous, Persoonia 40:146 (2018)
 = *Diaporthe chensiensis* Tian and Yang, Mycokeys 39: 127 (2017)
 = *Diaporthe ciliaris* (Curr.) Sacc., Syll. fung. (Abellini) 1: 676 (1882)
 = *Diaporthe controversa* (Desm.) Nitschke, in Fuckel, Jb. nassau. Ver. Naturk. 25–26: 319 (1871)
 = *Diaporthe cuticulbens* (Berk.) Sacc., Syll. fung. (Abellini) 1: 677 (1882)
 = *Diaporthe helicis* Niessl, Verhandlungen des naturforschenden Vereines in Brünn 16: 50 (1876)

= *Diaporthe lonicerae* Dissan., Camporesi & K.D. Hyde, in Dissanayake, Camporesi, Hyde, Zhang, Yan & Li, Mycosphere 8(5): 867 (2017)

= *Diaporthe malbranchei* Sacc., Michelia 1(no. 5): 509 (1879)

= *Diaporthe malbranchei* var. *abscondita* Berl. ex Sacc., Syll. fung. (Abellini) 9: 713 (1891)

= *Diaporthe maritima* Tanney, Fungal Biology 120: 1454 (2016)

= *Diaporthe melena* (Rehm) Petr., Mycologia carpathica 4: no. 89 (1920)

= *Diaporthe momicola* Dissanayake, Li and Hyde, Mycosphere 8: 541 (2017)

= *Diaporthe neilliae* Peck, Annual Report on the New York State Museum of Natural History 39: 52 (1887)

= *Diaporthe nitschkei* J. Kunze, Fung. sel. exs., cent. 2: no. 124 (1877)

= *Diaporthe nobilis* Saccardo and Spegazzini, Michelia 1: 386 (1878)

= *Diaporthe nucleata* (Curr.) Sacc., Syll. fung. (Abellini) 1: 617 (1882)

= *Diaporthe oligocarpa* subsp. viridarii Sacc., Michelia 2(no. 7): 301 (1881)

= *Diaporthe ophites* Sacc., Mycotheca veneta 3: no. 214 (1875)

= *Diaporthe padina* Tian and Yang, Mycokeys 39: 137 (2017)

= *Diaporthe phragmitis* Crous, Fungal Planet 283: 219 (2014)

= *Diaporthe protracta* Nitschke, Pyrenomyc. Germ. 2: 255 (1870)

= *Diaporthe pulla* Nitschke, Pyrenomycetes Germanici 2: 249 (1870)

= *Diaporthe quadrinucleata* (Curr.) Sacc., Syll. fung. (Abellini) 1: 689 (1882)

= *Diaporthe quercus* Fuckel, Jb. nassau. Ver. Naturk. 27–28: 36 (1874) [1873–74]

= *Diaporthe rehmi* Nitschke, Pyrenomyc. Germ. 2: 301 (1870)

= *Diaporthe reseccans* Nitschke, Pyrenomyc. Germ. 2: 314 (1870)

= *Diaporthe rhododendri* Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 141 (1903)

= *Diaporthe rosicola* Wanasinghe, Jones and Hyde, Fungal Diversity 89: 187 (2018)

= *Diaporthe vaccinii* Sacc., Michelia 2(no. 4): 1882

= *Diaporthe velata* (Pers.) Nitschke, Pyrenomyc. Germ. 2: 287 (1870)

= *Diaporthe velata* f. *melena* (Rehm) Petr., Hedwigia 65: 207 (1925)

= *Diaporthe viridarii* Sacc., Michelia 2(no. 7): 301 (1881)

= *Diaporthe viridarii* (Sacc.) Sacc., Syll. fung. (Abellini) 1: 671 (1882)

= *Diatrype badhamii* (Curr.) Sacc., Syll. fung. (Abellini) 1: 635 (1882)

= *Diatrype nucleata* (Curr.) Sacc., Syll. fung. (Abellini) 1: 617 (1882)

= *Phoma alnea* Nitschke ex Sacc., Michelia 2(no. 6): 97 (1880)

= *Phoma ambigu a* (Nitschke) Sacc., Grevillea 1(no. 4): 52 (1872)

= *Phoma anceps* Sacc., Michelia 2(no. 7): 273 (1881)

= *Phoma anceps* var. *polygoni* Grove, J. Bot., Lond. 56: 289 (1918)

= *Phoma conorum* Sacc., Michelia 2(no. 8): 615 (1882)

= *Phoma controversa* (Desm.) Sacc., Michelia 2(no. 8): 616 (1882)

= *Phoma jaczewskii* Sacc. & P. Syd., Syll. fung. (Abellini) 16: 875 (1902)

= *Phoma oblonga* Desm., Pl. Crypt. Nord France, Edn 1 1: no. 60 (1823)

= *Phoma ophites* Sacc., Syll. fung. (Abellini) 3: 89 (1884)

= *Phoma velata* f. *minor* Sacc., Syll. fung. (Abellini) 3: 92 (1884)

Phomopsis ambiguа (Nitschke) Traverso, Fl. ital. crypt. (Florence) 2(1): 266 (1906)

Phomopsis conorum (Sacc.) Died., Annls mycol. 9(1): 22 (1911)

Phomopsis conorum var. naviculispora Traverso, Prace Morav. Prfr. Spoleön. 8: 27 (extr.) (1912)

Phomopsis controversa (Desm.) Traverso, Fl. ital. crypt. (Florence) 2(1): 273 (1906)

Phomopsis eres (Nitschke) Grove, J. Bot., Lond. 56: 291 (1918)

Phomopsis oblonga (Desm.) Traverso, Fl. ital. crypt. (Florence) 2(1): 248 (1906)

Phomopsis ophites (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 254 (1906)

Phomopsis velata Sacc. Traverso, Fl. ital. crypt. (Florence) 2: 248 (1906)

Sclerophoma pithya (Sacc.) Died., Annls mycol. 9(3): 281 (1911)

Sclerophomella occulta (Desm.) Höhn., Hedwigia 60: 129 (1918)

Septoria conorum (Sacc.) Oudem., Ned. kruidk. Archf. 3 sér. 2: 270 (1901)

Sphaeria badhamii Curr. [as ‘badhami’], Trans. Linn. Soc. London 22: 270 (1859)

Sphaeria ciliaris Curr., Quart. J. Microscop. Sci. 7: 231 (1859)

Sphaeria controversa Desm., Annls Sci. Nat., Bot., sér. 2 17: 102 (1842)

Sphaeria discutiens Berk., in Smith, Engl. Fl., Fungi (Edn 2) (London) 5(2): 245 (1836)

Sphaeria quadrinucleata Curr. [as ‘quadri-nucleata’], Trans. Linn. Soc. London 22: 325 (1859)

Sphaeria resecans (Nitschke) W. Phillips & Plowr., Grevillea 4(no. 31): 124 (1876)

Sphaeria velata Pers., Syn. meth. fung. (Göttingen) 1: 32 (1801)

Sphaeronaema pithyum Sacc., Syll. fung. (Abellini) 3: 192 (1884)

Valsa controversa (Desm.) Cooke, Handb. Brit. Fungi 2: 824 (1871)

Typification details – Lectotype, B 700009145; epitope BPI 892912 (Designated by Udayanga et al. 2014a)

Hosts – This species is known to infect numerous host plants (see Udayanga et al. 2014 and Guo et al. 2020)

Distribution – Based on the studies of Udayanga et al. (2014) and Guo et al. (2020), this species has a wide and extensive distribution.

Notes – *Diaporthe eres* was first introduced from *Ulmus* sp. in Germany. The species was reported as causing branch canker, leaf blight, and root rot on a wide range of hosts and distributions (Dissanayake et al. 2017c, Guo et al. 2020, Chaisiri et al. 2021, Du et al. 2021). Chaisiri et al. (2021) delimitated species boundaries to facilitate *D. eres* species identification based on a genomic DNA sequence database, GCPSR principle, and the PTP analyses. Several species including *D. alnea* (the type species of *Diaporthe*) were previously synonymized under *D. eres* based on molecular analyses, pairwise homoplasy and phylogenetic networks (Fan et al. 2018, Yang et al. 2018a, Guo et al. 2020, Chaisiri et al. 2021, Hilário et al. 2021c). *Diaporthe eres* has been used to be the name of the second largest species complex in *Diaporthe*. Norphanphoun et al. (2022) proposed that the type species, *D. alnea* is the oldest name (Fuckel 1867) and should be used to describe this species complex. Although the general rule in nomenclature is to prioritize the earliest name, exceptions can be made when the later name is widely and consistently used to avoid confusion. In such cases, a proposal for conservation can be made according to the primary goal of the ICNafp which is to provide a stable method of naming taxonomic groups and avoid names that may cause error, ambiguity, or confusion in scientific communication. To assess the usage of each name, we conducted a search on Google and Google Scholar, which indicated the following results: *D. alnea* had 16,700 Google hits and 173 Google Scholar hits, while *D. eres* had 61,000 Google hits and 1,390 Google Scholar hits (accessed on June 27, 2023). Based on these usage indicators, we suggest proposing the conservation of the name *D. eres* over *D. alnea*. Additionally, the use of the name *D. eres* species complex is more prevalent compared to the use of the name *D. alnea* species complex. Therefore, we recommend using the name “*D. eres*” species complex.

Typification details – Holotype, BRIP 64096a; preserved as metabolically inactive. culture; ex-type, BRIP 64096a
- Host – *Annonoa muricata* (Annonaceae)
- Distribution – Oceania (Australia)
- Notes – *Diaporthe etinsideae* was introduced by Tan & Shivas (2022) based on molecular data. In phylogenetic tree based on ITS, *tub2*, and *tef1*-α sequences, *D. etinsideae* formed a distinct clade sister to *D. tulliensis* (Tan & Shivas 2022).

Diaporthe eucalypti Harkn., Bull. Calif. Acad. Sci. 1(no. 1): 44 (1884)

Typification details – Holotype, Harkness 3613
- Host – *Eucalyptus globulus* (Myrtaceae)
- Distribution – North America (USA)
- Notes – *Diaporthe eucalypti* was published as *Diaporthe* (Chorostate) *eucalypti* (Harkness 1884). The species was found from the dead leaves of *Eucalyptus globulus* in San Francisco, USA. It is characterized by aggregated perithecia in valsaeform spots, bordered by a raised black line, oblong to fusoid ascii, 33 × 7 µm, fusiform, slightly curved, hyaline, 1-septate, 4-guttules, acuminate ascospores, 15 × 4 µm (Harkness 1884). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, VPRI 20391
- Hosts – *Eucalyptus globoidea*, *E. sieber*, *Eucalyptus* sp. (Myrtaceae)
- Distribution – Oceania (Australia)
- Notes – *Diaporthe eucalypticola* was introduced by Yuan et al. (1995). The species was found from stem wounds of artificially inoculated *Eucalyptus globoidea* and *E. sieber* in Victoria, Australia. This species has separated ascomata, immersed beneath the narrow blackened dorsal area in the periderm, and loosely arranged above the blackened marginal zone deep in the wood, globose or depressed, beak through bark, 8-spored, clavate, apex more or less truncate asci, with nonamyloid refractive apical ring, 30–50 × 7–9 µm, uni- to biserate, elongated to ellipsoid, to cylindrical, inequilateral or straight, 1 median septum, not constricted at the septum, often bearing delicate setose appendages at each end, 4-guttules, hyaline ascospores, 10–14 × 2–4 µm. The asexual morph was described as *Phomopsis eucalypticola* and it has eustromatic to pycnidial, unilocular conidiomata. Alpha conidia are ellipsoid, sometimes obovoid, aseptate, hyaline, 2-guttules, and beta conidia are filiform, straight, curved or hamate, aseptate, hyaline. Detailed descriptions of both morphs were given by Yuan et al. (1995). Sequence data is not available for this species.

Diaporthe eucalyptorum Crous & R.G. Shivas, Persoonia 28: 153 (2012)

Typification details – Holotype, CBS H-20958; ex-type, CPC 17203 = CBS 132525
- Hosts – *Eucalyptus* sp. (Myrtaceae), *Melia azedarach* (Meliaceae), *Morinda officinalis* (Rubiaceae), unidentified twig
- Distribution – Asia (China, India), Oceania (Australia)
- Notes – *Diaporthe eucalyptorum* was introduced by Crous et al. (2012). The species was found from the leaves of *Eucalyptus* sp. in Queensland, Australia. It produced pycnidia in culture on pine needle agar, fusoid and aseptate alpha conidia, with guttules, apex subobtuse, base subtruncate, while beta and gamma conidia were not observed (Crous et al. 2012). Chethana et al. (2021) reported the sexual morph of *D. eucalyptorum* on an unidentified twig. Luo et al. (2022) isolated an endophytic strain of *D. eucalyptorum* and it produced both alpha and beta conidia. Detailed descriptions and illustrations of the asexual morph were given by Crous et al. (2012) and
Luo et al. (2022), and the sexual morph were given by Chethana et al. (2021). *Diaporthe eucalyptorum* differs from *Phomopsis eucalyptorum* which was also found on *Eucalyptus* in having shorter conidia. Phylogenetic analyses based on LSU sequence data provided by Crous et al. (2012) indicated that *D. eucalyptorum* should be the same species as *D. musigena*. However, the ITS Blast result indicated that *D. eucalyptorum* is a distinct species of *Diaporthe* (Crous et al. 2012). Gao et al. (2020) reported two new compounds which are eucalyptacid A (1) and eucalactam B (2), along with six known compounds from the solid rice cultures of the endophytic fungus *D. eucalyptorum* isolated from *Melia azedarach*. They also tested the antifungal activities of these compounds against four selected phytopathogenic fungi.

The ITS tree of Norphanphoun et al. (2022, Fig. 3), indicated that the single strain of *D. eucalyptorum* (CBS 132525) clustered with other species of *D. arecae* species complex with low bootstrap support. Multi-loci are needed to confirm the status of this species.

Typification details – Holotype, SCHM 0020 (type of *D. eucommiae*); Chen 020 (type of *P. eucommiae*)

Hosts – *Cyclocarya paliurus* (Juglandaceae), *Eucommia ulmoides* (Eucommiaceae)
Distribution – Asia (China)

Notes – *Phomopsis eucommiae* was established by Chi (1994) and transferred to *Diaporthe* by Gao et al. (2017). *Diaporthe eucommiae* is pathogenic fungi causing leaf black spot disease on *Eucommiae ulmoidis* in Guangdong, China (Chi 1994). It was also found as the causal agent of leaf black blight on *Cyclocarya paliurus* (Jiang et al. 2018).

Only ITS sequence data is available for this species and the ITS tree of Norphanphoun et al. (2022, Fig. 3), indicated that it clustered with other species of *D. arecae* species complex with low bootstrap support. Multi-loci are needed to confirm the status of this species.

Typification details – Holotype, SCHM (Luo 3607)

Hosts – *Eucommia ulmoides* (Eucommiaceae), *Syrax hypoglaucus* (Syracaceae)
Distribution – Asia (China)

Notes – *Phomopsis eucommiicola* was introduced by Chang et al. (2005b), and found on *Eucommia ulmoides* in China. However, Gao et al. (2017) transferred this species to *Diaporthe*. The species has conidiomata of eustroma, immersed, erumpent when mature, unilocular, produces fusiform unicellular alpha conidia, which containing 0–2 oil drops, and filiform unicellular beta conidia, curved, rarely straight (Chang et al. 2005b). The detailed descriptions and drawings of the asexual morph for this species were given by Chang et al. (2005b).

Only the ITS sequence data is available for *D. eucommiicola* and the single strain clustered with other species of *D. alnea* species complex (= *D. alnea* species complex) with low bootstrap support in the ITS tree of Norphanphoun et al. (2022, Fig. 3). Multi-loci analyses are needed to confirm the status of this species.

Diaporthe eugeniae R.R. Gomes, Glienke & Crous, Persoonia 31: 21 (2013)
Typification details – Holotype, IMI 177560

Hosts – *Eugenia aromatica* (Myrtaceae), *Hylocereus polyrhizus* (Cactaceae), *Mangifera indica* (Anacardiaceae), *Syzygium cumini* (Myrtaceae)
Distribution – Asia (India, Indonesia, Malaysia)
The species was found from *Eugenia aromatica* in Indonesia. Gomes et al. (2013) transferred *P. eugeniae* to *Diaporthe* and noted that the isolate could be authentic for the name, it was however proved to be sterile. The species was also found as a pathogen causing stem gray blight of *Hylocereus polyrhizus*, and its pathogenicity was confirmed by Huda-Shakirah et al. (2021). Morphological details of the asexual morph of *Diaporthe eugeniae* (as *Phomopsis eugeniae*) was given by Punithalingam et al. (1974). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe eugeniae* clustered in the *D. arecae* species complex. The type strain formed a distinct lineage while another strain formed a different placement within the *D. arecae* species complex.

Diaporthe eumorpha (Durieu & Mont.) Maire, Myc. Bor. Afr., fasc.: 246 (1917)

≡ *Sphaeria eumorpha* (Durieu & Mont.) Fr., Summa veg. Scand., Sectio Post. (Stockholm): 389 (1849)

Typification details – N/A

Hosts – *Acanthus mollis* (Acanthaceae), *Arundinaria* sp. (Poaceae), *Astragalus lusitanicus* (Fabaceae), *Daucus maximus* (Apiciaceae), *Vinca* sp. (Apocynaceae)

Distribution – Africa (Algeria)

Notes – *Diaporthe eumorpha* was first introduced as *Sphaeria picea* var. *eumorpha* which was found on *Daucus* spp. (especially *Dauco maximus*) in Algeria (Durieu 1848). The morphological description was given by Durieu (1848). Sequence data is not available for this species.

Diaporthe euonymi Dearn., Mycologia 8(2): 99 (1916)

Typification details – Holotype, Bowman, Jun. 1913

Hosts – *Euonymus atropurpureus*, *E. sieboldianus* (Celastraceae)

Distribution – Asia (Japan), North America (Canada)

Notes – *Diaporthe euonymi* was introduced by Dearness (1916). The species was found from dead stems of *Euonymus atropurpureus* in Ontario, Canada. Stroma contains one or a few perithecia, whitening the substance of the bark, partly sunk in the wood, globose, with thick, cylindrical to conical ostioles, erumpent through the epidermis, 8-spored, cylindrical to fusoid, sessile asci, 60–75 × 11–15 µm, paraphysate, obliquely uniseriate or sub-biseriate, oblong to elliptical, septum distinct, not constricted, ascospores, 12–15 × 6–7 µm (see more details in Dearness 1916). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe euryala (Mont.) Sacc., Syll. fung. (Abellini) 1: 619 (1882)

≡ *Valsa euryala* (Mont.) Mont., Syll. gen. sp. crypt. (Paris): 221 (1856)

Typification details – N/A

Host – N/A

Distribution – Europe (France)

Notes – *Diaporthe euryala* was introduced as *Sphaeria euryala* from France by Montagne (1845). This species has immersed stromata, gregarious perithecium, ostiole conjoined into a large flat black disc, sulcate ascii, oblong and 1-septate ascospores (Montagne 1845). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe euspina (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 659 (1882)

≡ *Sphaeria euspina* Cooke & Ellis, Grevillea 5(no. 35): 93 (1877)

Typification details – Holotype, Ellis 2475

Hosts – *Chenopodium* sp. (Amaranthaceae), *Lactuca* sp. (Asteraceae)
Distribution – North America (USA)

Notes – *Diaporthe euspina* was first introduced as *Sphaeria euspina* by Cooke & Ellis (1877). The species was found from *Chenopodium* in New Jersey, USA. Asci are clavate and spores are lanceolate, 1-septate, with quadridinucleate, 18 × 3 µm (Cooke & Ellis 1877). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe eusticha Ellis & Everh., N. Amer. Pyren. (Newfield): 434 (1892)
Typification details – Holotype, NY, Ellis & Everhart s.n.
Host – *Carya* sp. (Juglandaceae)
Distribution – North America (USA)

Notes – *Diaporthe eusticha* was introduced by Ellis & Everhart (1892). The species was found from dead branches of *Carya* sp. in New Jersey, USA. The morphological characters comprise small perithecia, immersed in the unaltered substance of the inner bark in groups of 8–12, ostiole do not project at all but are slightly umbilicate depressed, converging and seriate erumpent in a black, convex-hemispherical disc which is loosely surrounded by the ruptured epidermis, with 8-spored, clavate asci, 40–50 × 6–7 µm, aparaphysate, biseriate, cylindrical to fusoid, 1-septate, slightly constricted, 4-nucleate ascospores, 12–15 × 3–3.5 µm. A detailed description of the sexual morph was given by Ellis & Everhart (1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe exercitalis (Peck) Sacc., Syll. fung. (Abellini) 1: 693 (1882)
Typification details – Holotype, Peck s.n.
Host – On dead stems of herbs, *Solidago* sp. (Asteraceae)
Distribution – North America (USA)

Notes – *Diaporthe exercitalis* was first introduced as *Sphaeria exercitalis* by Peck (1878), from the dead stems of herbs in New York, USA. Based on the original description of *S. exercitalis* (current name = *D. exercitalis*), this species is remarkable for the long lines of perithecia and the prominent ostiole (Peck 1878). Sequence data is not available for this species.

Diaporthe exiguistroma Dearn., Mycologia 9(6): 348 (1917)
Typification details – Holotype, Macoun 923
Host – *Rosa* sp. (Rosaceae)
Distribution – North America (Canada)

Notes – *Diaporthe exiguistroma* was introduced by Dearness (1917). The species was found from dead stems of *Rosa* sp. in British Columbia, Canada. *Diaporthe exiguistroma* is characterized by 2–3-locules in stroma with short ostiole, comparatively asci, 75–90 × 15 µm, and straight or slightly curved, 1-septate, constricted, 4 oil droplets, hyaline ascospores, 18–24 × 6–7 µm (Dearness 1917). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe extorris Sacc., Michelia 1(no. 1): 30 (1877)
Typification details – N/A
Host – *Chimonanthus fragrans* (Calycanthaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe extorris* was introduced by Saccardo (1877) from dead branches of *Chimonanthus fragrans* in Padua, Italy. The species has immersed, globose, black perithecium, stromatal line absent, with cylindrical to conoid ostiole, subclavate asci, 80 × 12 µm, bifoveolatum at apex, aparaphysate, and oblong to fusoid, with obtuse at both ends, straight, curved, hyaline, 1-septate, constricted at the septum, 4-guttules ascospores, 16–18 × 7–8 µm. A detailed description of the sexual morph was given by Saccardo (1877). The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe extranea Sacc., Annls mycol. 12(3): 289 (1914)

Typification details – Holotype, Petrak 36 (1913)

Hosts – *Salix purpurea*, *Salix* sp. (Salicaceae)

Distribution – Europe (Czechoslovakia, Germany)

Notes – *Diaporthe extranea* was introduced by Saccardo (1914). The species was found from the dead branches of *Salix purpurea* in Germany. It has gregarious, globose perithecium, with a black tortous stromatic line, short-erupting ostiole, fusoid asci, 45–50 × 7–7.5 µm, apex bifoveolate, aparaphysate, and fusoid, 1-septate, not constricted in the middle, 4-guttules, hyaline ascospores 11–12 × 2.3–2.5 µm. A detailed description of sexual morph was given by Saccardo (1914). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe faberi J. Kunze ex Sacc., Syll. fung. (Abellini) 1: 649 (1882)

Typification details – Holotype, anon. s.n. (Kunze, Fung. sel. exsic. 266)

Host – *Laserpitium latifolium* (Apiaceae), *Rosa canina* (Rosaceae)

Distribution – Europe (Austria, France, Germany)

Notes – *Diaporthe faberi* was reported by Saccardo (1882a) on the dead stems of *Rosa canina*. The morphology of the sexual morph was described in the original publication with fusoid to clavate asci, 40–45 × 7–8 µm, fusoid, 1-septate, hyaline, with 4-guttules ascospores, 9–10 × 3–3.5 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, MEBB 5609

Hosts – *Fagus grandifolia, F. sylvatica* (Fagaceae)

Distribution – Europe (Bulgaria, Poland), North America (Canada, USA)

Notes – *Diaporthe fagi* was introduced by Wehmeyer (1933a). The species was found from *Fagus grandifolia* in New York, USA. However, the authors were unable to find the original description of the species. Sequence data is not available for this species.

Diaporthe fallaciosa Nitschke, Pyrenomyc. Germ. 2: 254 (1870)

Typification details – N/A

Hosts – *Acer pseudoplatanus, A. rubrum* (Sapindaceae)

Distribution – Europe (Denmark, Germany) North America (USA)

Notes – *Diaporthe fallaciosa* was found from *Acer pseudoplatanus* in Germany and introduced by Nitschke (1870). The species has stromata, with depressed convex, conical, base flattened perithecia, with elongate, minute ostiole, commonly come forth from the cracks, oblong to subcylindrical asci, 50–56 × 8–10 µm, and fusiform, 1-septate, not constricted or often slightly anisomorous, hyaline ascospores, 12–14 × 4 µm (see more details in Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe farinosa Peck, Annual Report on the New York State Museum of Natural History 38: 69 (1885)

Typification details – Holotype, Peck s.n.

Hosts – *Tilia americana, T. platyphyllos* (Malvaceae)

Distribution – Europe (Spain), North America (USA)

Notes – *Diaporthe farinosa* was introduced by Peck (1885). The species was found from dead branches of *Tilia americana* in New York, USA. *Diaporthe farinosa* has 4–10 perithecium in a circle, the cluster subconfluent, subcylindrical asci, 61–76 × 9–10 µm, crowded to biseriate, oblong to subfusiform, 1-septate, quadrinucleate ascospores, 15–20 × 4–5 µm. Peck (1885) discussed that
D. farinosa is similar to D. furfuracea by having pulverulent stroma. However, it differs from D. furfuracea in having prominent disk and small quadrinucleate, crowded or biseriate ascospores. (Peck 1885). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe fasciculata Nitschke, Pyrenomyc. Germ. 2: 247 (1870)

Typification details – N/A

Host – *Robinia pseudoacacia* (Fabaceae)

Distribution – Europe (Austria, Belgium, Czechoslovakia, Denmark, England, France, Germany, Hungary, Italy, Poland, Romania, The Netherlands, USSR, Yugoslavia), South America (Argentina)

Notes – *Diaporthe fasciculata* was introduced by Nitschke (1870). Nitschke (1870) stated that this is one of the most widespread species of *Diaporthe* and seems to be known to all mycologists. However, it has not yet been thoroughly investigated. The species has immersed in black border stroma, blackening the surface of wood. Spermogonia are in young stromata, postulate-protuberant, phomatoidea. Spermatia are fusiform, to narrowly ellipsoid, 8–10 × 2.5–3 μm, usually 2-guttules, hyaline, in sterigmata. Perithecia are semi-immersed or immersed in the wood, usually clustered, with a thin neck, elongated ostiole, cylindrical, rarely thickened towards the base. Ascii are 8-spored, cylindrical or narrowly oblong, sessile, 53–66 × 8–9 μm, with fusiform, obtuse spores, 12–14 × 3–4 μm, 2-celled, scarcely constricted, 4-guttules, finally become 4-celled, hyaline to pale. A detailed description of this species was given by Nitschke (1870) and Saccardo (1896). Sequence data is not available for this species.

Diaporthe feltgenii Sacc. & P. Syd., Syll. fung. (Abellini) 16: 493 (1902)

Typification details – Holotype, Feltgen, May 1898

Host – *Cerasus avium* (Rosaceae)

Distribution – Europe (Luxembourg)

Notes – *Diaporthe feltgenii* was introduced by Saccardo & Sydow (1902). The species was found from the branches of *Cerasus avium* in Luxembourg. It is characterized by scattered, immersed, conical, circular, pale to dark brown stroma, with a prominent apex, 15–20 perithecia in a stroma, ovate to conical thick ostiole, oblong to fusoid ascii, 65–75 × 9–10 μm, and fusoid, 1-septate, slightly constricted at the septum, guttules ascospores, 15–21 × 5–6 μm. The detailed sexual morph description was given by Saccardo & Sydow (1902). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe fibrosa (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

≡ *Wuestneia fibrosa* (Pers.) Auersw., in Rabenhorst, Fungi rhenani exsic., fasc. 6: no. 589 (1863)

≡ *Sphaeria fibrosa* Pers., Syn. meth. fung. (Göttingen) 1: 40 (1801)

Typification details – N/A

Hosts – *Celtis glabrata* (Cannabaceae), *Frangula alnus* (Rhamnaceae), *Prunus cerasifera*, *P. spinosa* (Rosaceae), *Rhamnus cathartica*, *Rhamnus* sp. (Rhamnaceae)

Distribution – Europe (Austria, Bulgaria, Denmark, Poland, Sweden, United Kingdom, Ukraine)

Notes – Gomes et al. (2013) described *Diaporthe fibrosa* from *Rhamnus* in Europe. We could not locate the type specimen. This species is characterized by stromata, immersed, black, globose perithecia, cylindrical asci, 100–108 × 8–10 μm, with ellipsoid or ovate ascospores, rounded on both sides, 1-septate, constricted, hyaline ascospores, 12–14 × 6–8 μm (Note: the size ranges provided here were combined from both Fuckel 1870 and Saccardo 1882). Spermogonia was
reported with ellipsoid, hyaline spermatia. Detailed descriptions for this species were given by Fuckel (1870) and Saccardo (1882a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe fibrosa* clustered in the *D. carpini* species complex.

Typification details – Holotype, MFLU 18-2588; ex-type, MFLUCC 20-0178
Host – *Ficus septica* (Moraceae)
Distribution – Asia (Taiwan)
Notes – *Diaporthe fici-septicae* was found as a saprobe on *Ficus septica* in Dahu forest area, Taiwan (Tennakoon et al. 2021). *Diaporthe fici-septicae* can be distinguished to its phylogenetically closely related species, *D. citriasiana* in smaller conidia (6–8 × 2–3 vs. 10.5–15 × 4–6.5 μm) (Huang et al. 2013, Tennakoon et al. 2021). The descriptions and illustrations of its asexual morph are available in Tennakoon et al. (2021). The sexual morph is undetermined.

Diaporthe flageoletiana Sacc., Bull. Soc. mycol. Fr. 12: 65 (1896)
Typification details – Holotype, Flagelolet s.n.
Host – *Calycanthus floridus* (Calycanthaceae)
Distribution – Europe (France)
Notes – *Diaporthe flageoletiana* was introduced by Saccardo (1896). The species was found from the dead branches of *Calycanthus floridus* in France. The species has gregarious or scattered perithecia, erumpent ostiole, fusoid asci, 45 × 6 μm, a paraphysate, and fusoid, 1-septate, scarcely constricted, hyaline ascospores, 12–14 × 3 μm. The detailed sexual morph description for this species was given by Saccardo (1896). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe floresiana Speg., Anal. Soc. cien. argent. 10(1): 17 (1880)
Typification details – Holotype, Spegazzini, Apr. 1880
Host – *Metrosideros* sp. (Myrtaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe floresiana* was introduced by Spegazzini (1880b). The species was found from the branches of *Metrosideros* sp. in Buenos Aires, Argentina. The species has black stroma, with bordered black line, globose, black perithecia, papilla, minute ostiole, oblong to fusoid asci, bifovulate at apex, 50–55 × 7–8 μm, and cylindrical to fusoid, 1-septate, constricted at the septum, 4-guttes, hyaline ascospores 13–15 × 3–3.5 μm. A detailed description of sexual morph was given by Spegazzini (1880b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe floridana Petr., Sydowia 6(5–6): 400 (1952)
Typification details – Holotype, Shear P233
Host – *Smilax* sp. (Smilacaceae)
Distribution – North America (USA)
Notes – *Diaporthe floridana* was introduced by Petrak (1952), from dead vines of *Smilax* sp. in Florida, USA. It is characterized by widely diffused stromata, with no clear stromatal line, loosely dispersed perithecia, which is usually solitary, rarely 2–3 sub-aggregated, globose to broadly ellipsoid, with cylindrical ostiole, membranous wall, pale olive- to grayish-brown, with cylindrical to clavate or subfusoid asci, 62–85 × 7–12 μm, few pseudoparaphyses, and clavate to oblong, 1-septate, not or gently constricted, hyaline ascospores, 11–15 × 6–6.5 μm. A detailed description of sexual morph was given by Petrak (1952). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe foeniculina (Sacc.) Udayanga & Castl., Persoonia 32: 95 (2014)
Diaporthe ravennica Thambugala, Camporesi & K.D. Hyde, Fungal Diversity 82: 296 (2016)
Diaporthe theicola Curzi, Atti Ist. bot. R. Univ. Pavia, 3 Sér. 3: 60 (1926)
Phoma foeniculina Sacc., Michelia 2(no. 6): 95 (1880)

Typification details – Holotype, PAD 281 (Phoma foeniculina); epitype, LISE 94791; epitype BPI 892462; ex-epitype CBS 187.27 (Diaporthe theicola)

Hosts – Acacia sp. (Fabaceae), Achillea millefolium (Asteraceae), Ailanthus altissima (Simaroubaceae), Arctium minus (Asteraceae), Asparagus sp. (Asparagaceae), Camellia sinensis (Theaceae), Castanea sativa (Fagaceae), Citrus aurantiifolia, C. aurantifolia-limon, C. bergamia, C. japonica, C. latifolia, C. limon, C. limonia, C. maxima, C. medica, C. mitis, C. paradisi, C. paradisi-trifoliata, C. reticulata, C. sinensis, C. sinensis-trifoliata (Rutaceae), Corylus avellana (Betulaceae), Cupressus sempervirens (Cupressaceae), Cyclopia longifolia (Fabaceae), Diospyros kaki (Ebenaceae), Ficus benjamina, F. carica (Moraceae), Foeniculum vulgare (Apiaceae), Fuchsia excorticata (Onagraceae), Glycine max (Fabaceae), Hemerocallis fulva (Asphodelaceae), Juglans regia (Juglandaceae), Lunaria rediviva (Brassicaceae), Malus domestica (Rosaceae), Melilotus officinalis (Fabaceae), Microcitrus australasica (Rutaceae), Olea europaea (Oleaceae), Paraserianthes lophantha (Fabaceae), Persea americana (Lauraceae), Prunus amygdalus, P. avium, P. persica (Rosaceae), Pyrus communis, P. pyrifolia (Rosaceae), Quercus suber (Fagaceae), Rhus penduline (Anacardiaceae), Ribes nigrum (Grossulariaceae), Rosa canina (Rosaceae), Salix sp. (Salicaceae), Vaccinium corymbosum (Ericaceae), Vicia sp. (Fabaceae), Vitis vinifera (Vitaceae), Wisteria sinensis (Fabaceae)

Distribution – Africa (South Africa), Asia (Iran, Turkey), Europe (France, Germany, Greece, Italy, Malta, Portugal, Serbia, Spain), North America (USA), Oceania (New Zealand), South America (Chile, Uruguay)

Notes – Diaporthe foeniculina was first identified as Phoma foeniculina on Foeniculum ‘arvensis’ in France. Phillips (2003) considered D. foeniculina as a synonym of D. foeniculacea (syn. Sphaeria foeniculacea). Udayanga et al. (2014b) transferred P. foeniculina to Diaporthe and provided possible synonyms of D. foeniculina based on sequence data, living cultures and type specimens. In addition, they observed three isotype specimens of D. foeniculacea and determined that they belong to the genus Phyllosticta Pers. (syn. Guignardia Viala & Ravaz). Therefore, D. foeniculacea should be excluded from Diaporthe. Diaporthe neotheicola and D. theicola (= Phomopsis theicola) were considered as synonyms of D. foeniculina (Udayanga et al. 2014b). Although, Index Fungorum listed D. neotheicola and D. theicola as distinct species. Here, we keep them as synonyms of D. foeniculina. Hilário et al. (2021b) listed Diaporthe baccae and D. ravennica as synonyms of D. foeniculina based on phylogeny.

Diaporthe foeniculina is usually known as an opportunistic pathogen of various herbaceous weeds, ornamentals, citrus and fruit trees (Santos & Phillips 2009, Udayanga et al. 2014b Guarnaccia & Crous 2017). Detailed descriptions and illustrations of asexual and sexual morphs for this species were given by Udayanga et al. (2014b). There are many studies on the pathogenicity of D. foeniculina, such as Guerrero et al. (2019) performed a pathogenicity test and indicated that D. foeniculina causes black tip and necrotic spots on Hazelnut Kernel in Chile. Esmaeilzadeh et al. (2020) reported that the same species can cause yellowing and dieback on Ficus benjamina (Annesi et al. 2016, Guerrero et al. 2019, Esmaeilzadeh et al. 2020). Recently, Yu et al. (2022) isolated Foeniculins A–C (1–3) together with a pair of enantiomers (±)-foeniculin D (4) from an endophytic strain of D. foeniculina.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe foeniculina clustered in the D. oncostoma species complex and is polyphyletic.

Typification details – Holotype, RGM 2539; ex-type, CBS 145289

Host – *Drimys winteri* (Winteraceae)

Distribution – South America (Chile)

Notes – *Diaporthe foikelawen* was introduced by Zapata et al. (2020) from the leaves and twigs of *Drimys winteri* in Freire, Chile. It is characterized by eustromatic, pycnidial conidiomata on pine needles on WA, 1–2 septate, rarely branched, densely aggregated, cylindrical, hyaline conidiophores, phialidic, cylindrical to cymbiform, terminal and lateral conidiogenous cell, fusoid to ellipsoid, straight, aseptate, guttules, hyaline alpha conidia, and spindle shaped, apex subacute, mostly curved, aseptate beta conidia, while paraphyses and gamma conidia were not observed. Detailed descriptions and illustrations of the asexual morph for this species were given by Zapata et al. (2020). The sexual morph was not observed.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe foikelawen* clustered in the *D. rudis* species complex.

Typification details – Holotype, UPCB96151; ex-type, CMRP1321

Host – *Schinus terebinthifolius* (Anacardiaceae)

Distribution – South America (Brazil)

Notes – *Diaporthe foliorum* was isolated as an endophyte from leaves of *Schinus terebinthifolius* in Brazil (Santos et al. 2021). Phylogenetically, *D. foliorum* was closely related to *D. mayteni* and *D. raonikayaporum*, which were also found as endophytes in Brazil (Gomes et al. 2013, Santos et al. 2021). However, *D. foliorum* differs from both species in having flared collarettes of conidiogenous cells and smaller alpha conidia (2.8–4.2 × 1.5–2 μm in *D. foliorum* vs. 5–7 × 2–3 μm in *D. mayteni* and 6–8 × 2–3 μm in *D. raonikayaporum*) (Gomes et al. 2013, Santos et al. 2021). Detailed descriptions and illustrations of the asexual morph were provided by Santos et al. (2021). The sexual morph is undetermined.

Diaporthe forabilis Nitschke, Pyrenomyc. Germ. 2: 259 (1870)

Typification details – N/A

Hosts – *Populus pyramidalis (= Populus nigra), Populus sp.* (Salicaceae), *Salix sp.* (Salicaceae)

Distribution – Europe (Denmark, Germany, Poland)

Notes – *Diaporthe forabilis* was introduced by Nitschke (1870). This species was found on three specimens from *Populus pyramidalis (= Populus nigra)* and *Salix sp.* in Germany (Nitschke 1879). However, it is not clear which specimen is the type. *Diaporthe forabilis* has immersed stroma, globose-depressed perithecium, rarely projected, with thick, subcylindrical, elongate ostiole, subcylindrical to clavate asci, 52–60 (rather 70) × 7–10 μm, and narrowly fusiform, 1-septate, constricted at the middle, 4-guttules, hyaline ascospores, 13–17 × 3–4 μm. A detailed description of the sexual morph was provided by Nitschke (1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe forlicesenica Bundhun, Camporesi & K.D. Hyde, Phytotaxa 516(1): 5 (2021)

Typification details – Holotype, MFLU 16-1322; ex-type, MFLUCC 17-1015

Host – *Dorycnium hirsutum* (Fabaceae)

Distribution – Europe (Italy)

Notes – This species was found on the dead aerial stem of *Dorycnium hirsutum* in Italy. Dissanayake et al. (2017b) introduced a species under the same name as the published species.
Diaporthe fraxinicola C.M. Tian & Qin Yang, MycoKeys 39: 133 (2018)

Typification details – Holotype, BJFC-S1495; ex-type, CFCC 52582

Host – *Fraxinus chinensis* (Oleaceae)

Distribution – Asia (China)

Notes – *Diaporthe fraxinicola* was introduced by Yang et al. (2018a). The species was found from the branches of *Fraxinus chinensis* in Shaanxi, China. Phylogenetically, the species formed as a distinct species in *Diaporthe*, and related to the clade containing *D. acerigena* and *D. oraccinii* (Yang et al. 2018a). However, *D. fraxinicola* differs from *D. acerigena* in having larger alpha conidia and differs from *D. oraccinii* in having longer and larger alpha conidia. The asexual morph descriptions and illustrations for *D. fraxinicola* were provided by Yang et al. (2018a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe fraxinicola* clustered in the *D. oncostoma* species complex.

Diaporthe fructicola Minosh., T. Ono & Hirooka, Persoonia 42: 409 (2019)

Typification details – Holotype, TNS F-54762; ex-type, OGC15-11 = HM15-390C = MAFF 246408

Hosts – *Passiflora edulis* × *P. edulis f. flavicarpa* (Passifloraceae)

Distribution – Asia (Japan)
Notes – *Diaporthe fructicola* was introduced by Crous et al. (2019) from *Passiflora edulis* × *P. edulis* f. *flavicarpa* in Japan. Compared with all *Diaporthe* species recorded from *Passiflora* spp., *D. fructicola* is quite similar to *D. passiflorae*. However, the alpha and gamma conidia of *D. passiflorae* are much shorter than those of *D. fructicola* (Crous et al. 2019). Phylogenetic analyses of five gene loci indicated that *D. fructicola* is a distinct species (Crous et al. 2019).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe fructicola* clustered in the *D. sojae* species complex.

Diaporthe fuchsiae Petr., Annls mycol. 19(3–4): 198 (1921)

Typification details – Holotype, Petrák, 10 May 1921

Host – *Fuchsia* sp. (Onagraceae)

Distribution – Europe (Czech Republic)

Notes – *Diaporthe fuchsiae* was introduced by Petrak (1921a). The species was found from a dead branch of *Fuchsia* sp. in Czech Republic. The species is characterized by having densely scattered perithecia, up to 15 or more in a stroma, with cylindrical slightly protruding ostiole, cylindrical to fusiform ascii, 45–55 × 5–7 µm, aparaphysate, elongate to spindle-shaped, 1-septate, often strongly constricted ascospores, 2-small guttules at each cell, 11–14 × 3.5–5 µm. A detailed description of the sexual morph was given by Petrak (1921a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe fuckelii J. Kunze, Fung. sel. exs., cent. 2: no. 139 (1877)

Typification details – Holotype, BPI 616254

Hosts – *Spiraea sp.*, *S. ulmifolia* (Rosaceae)

Distribution – Europe (Germany, Sweden)

Notes – We were unable to find the original paper for this species. However, the specimen BPI 616254 which collected by Kunze Johs. in 1875 deposited seem to be type specimen. The species has widely diffused stromata, blackened periderm, with a black circumscribing line, gregarious perithecia, short ostiole, fusoid to oblong asci, 45 × 9 µm, and fusoid, 1-septate, constricted, 2–4-guttules, hyaline ascospores, 11–13 × 3.5–4.5 µm. A detailed description of sexual morph is available in Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe fuegiana Speg., Boln Acad. nac. Cienc. Córdoba 11(2): 213 (1887) [1888]

Typification details – Holotype, LPS, Spegazzini, 1882

Host – *Chiliotrichum amelloides* (Asteraceae)

Distribution – South America (Argentina, Chile)

Notes – *Diaporthe fuegiana* was introduced by Spegazzini (1888). The species was found from the dead branches of *Chiliotrichum amelloides* in Argentina. It has stromata which are widely scattered, surrounded by thin black lines, with dense perithecia, carbonaceous ostiole, fusoid asci, 60–65 × 10 µm, aparaphysate, and elliptical to elongate, 1-septate, not constricted at the septum, 2-guttules, hyaline ascospores, 18–20 × 5–6 µm (Spegazzini 1888). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, ZBH3340150; ex-type, JZBH320150

Host – *Camellia sinensis* (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe fujianensis* was found as pathogen or saprobe on shoots of *Camellia sinensis* in China (Manawasinghe et al. 2021). *Diaporthe fujianensis* differs from its phylogenetically closely related species, *D. eucalyptorum* in having smaller alpha conidia (4–6 × 2–3 vs. 5.5–8 × 2–3 µm) (Crous et al. 2012, Manawasinghe et al. 2021). Detailed descriptions and
illustrations of its asexual morph are available in Manawasinghe et al. (2021). The sexual morph is undetermined.

Diaporthe fulvicolor Y.S. Guo & G.P. Wang, Persoonia 45: 146 (2020)

Typification details – Holotype, HMAS 248149; ex-type, CGMCC 3.19601 = PSCG 051

Host – *Pyrus pyrifolia* cv. cuiguan (Rosaceae)

Distribution – Asia (China)

Notes – *Diaporthe fulvicolor* was found from branches of *Pyrus pyrifolia* cv. cuiguan in China (Guo et al. 2020). This species was introduced based on the multi-locus phylogenetic analysis and morphological characters of its asexual morph. The pycnidial conidiomata were produced on alfalfa stems, with fusiform to oval, aseptate, acutely round at both ends, hyaline, 2-guttules or multi-guttules alpha conidia, 7–9 × 2–3 μm. Beta and gamma conidia were not observed (Guo et al. 2020). A pathogenicity test confirmed that it is pathogenic causing canker disease in *Pyrus pyrifolia* (Guo et al. 2020). In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe fulvicolor* clustered in the *D. arecae* species complex.

Diaporthe furfuracea (Fr.) Sacc., Syll. fung. (Abellini) 1: 618 (1882)

≡ *Sphaeria furfuracea* Fr., Syst. mycol. (Lundae) 2(1): 109 (1822)

≡ *Valsa furfuracea* (Fr.) Cooke, Handb. Brit. Fungi 2: 832 (1871)

Typification details – N/A

Host – N/A

Distribution – Europe (Sweden)

Notes – The species was first established as *Sphaeria furfuracea*, and later it was synonymized under *Diaporthe furfuracea* (Saccardo 1882a). The species has shiny stromata, globose perithecia, formed in stromata, with very short ostiole, cylindrical asci, and narrowly ellipsoid, 1-septate, hyaline ascospores, 25–30 × 11 μm (Saccardo 1882a). The asexual morph is undetermined. We could not locate the type specimen of *D. furfuracea*. Sequence data is not available for this species.

Typification details – Holotype, JZBH3340154; ex-type, JZB320154–7

Host – *Camellia sinensis* (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe fusiformis* was isolated as pathogen or saprobe on leaves of *Camellia sinensis* (Manawasinghe et al. 2021). Phylogenetically, *D. fusiformis* has a close relationship with *D. eucalyptorum* and *D. fujianensis* (Manawasinghe et al. 2021). However, they have different shapes of alpha conidia, which are fusiform in *D. fusiformis*; fusoid conidia in *D. eucalyptorum*; and oval to ellipsoidal in *D. fujianensis* (Crous et al. 2012, Manawasinghe et al. 2021). In addition, the alpha conidia of *D. fusiformis* are larger than those of *D. fujianensis* (5–8 × 2–3 vs. 4–6 × 2–3 μm) (Crous et al. 2012, Manawasinghe et al. 2021). Detailed descriptions and illustrations of the asexual morph were given by Manawasinghe et al. (2021). The sexual morph is undetermined.

Diaporthe fusispora Z.Q. Yuan, Mycotaxon 63: 14 (1997)

Typification details – Holotype, VPRI 21071

Hosts – *Eucalyptus globulus*, E. nitens, E. pauciflora (Myrtaceae)

Distribution – Oceania (Australia)

Notes – *Diaporthe fusispora* was introduced by Yuan & Mohammed (1997). It was found from branches of *Eucalyptus globulus* in Tasmania, Australia. This species comprises solitary or loosely clustered ascomata, with break protruding through the bark, clavate, with nonamyloid refractive apical rings asci, 37.5–43 × 7.5–10 μm, biseriate, fusoid, sometimes elliptical to fusoid,
straight or slightly curved, 1-median-septate, constricted at the septum, 4-guttules, hyaline ascospores, 10–15 × 3–5 µm, bearing a delicate setose appendage at each end (Yuan & Mohammed 1997). A detailed description was provided by Yuan & Mohammed (1997). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthella galligena Petr., Annls mycol. 26(5/6): 432 (1928)
Typification details – Holotype, Clemens 1525; Clemens 1508,
Host – *Euodia dubia* (Rutaceae)
Distribution – Asia (The Philippines)
Notes – *Diaporthella galligena* was introduced by Sydow & Petrak (1928). The species was found from the living branch of *Euodia dubia* in the Philippines. The gall-like swelling makes this parasitic species very distinctive and easy to recognize (Sydow & Petrak 1928). The morphological characters comprise stromata, with perithecia more or less densely dispersed, cylindrical ostiole (gently clavate at the upper half), abundant periphysate, membranaceous wall, hyaline or subhyaline, yellow- or gray-brown in the outer layer, with numerous, 8-spored, clavate or clavate to fusoid asci, 43–55 × 8–12 µm, pseudoparaphyses, distichous, biconical or oblong to fusoid, straight, or slightly unequal, septate in the middle, not constricted ascospores, attenuated on both sides, 15–18 × 3.5–5 µm, with short appendages. A detailed description of the sexual morph is available in Sydow & Petrak (1928). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthella gallophila Ellis, Bull. Torrey bot. Club 8(2): 90 (1881)
Typification details – N/A
Hosts – *Rubus* sp., *R. villosus* (Rosaceae)
Distribution – North America (USA)
Notes – *Diaporthella gallophila* was introduced by Ellis (1881). The species was found from dead stems of *Rubus villosus* in North America, USA. It has densely gregarious, sub-cuticular, depressed-hemispheric, rugose perithecia, with long, cylindrical ostiole, biseriate, oblong to fusiform, 2–4 nucellar and mostly constricted, hyaline ascospores, 12.5–18 long µm, with appendage at both ends when young, slightly curved. A detailed description can be seen in Ellis (1881). Sequence data is not available for this species.

Typification details – Holotype, HA 10987; ex-type, ILLS 43621 = CBS 180.91
Hosts – *Cannabis sativa* (Cannabaceae), *Pyris pyrifolia* (Rosaceae).
Distribution – North America (USA)
Notes – *Diaporthella ganjae* was established as *Phomopsis ganjae* by Mcpartland (1983) based on morphology. The species was found on living, wilted, or dead and dried leaves of *Cannabis sativa* in Illinois, USA. Mcpartland (1983) mentioned that *P. ganjae* is exclusively a leaf pathogen in both natural infection and laboratory pathogenicity tests which completely defoliates *Cannabis sativa* at high inoculum level. Gomes et al. (2013) synonymized *P. ganjae* under *D. ganjae*. The species produced solitary or aggregated pycnidia, unilocular or multilocular, stromatic, ostiolate, carbonaceous at apex, base pale sooty brown and parenchymous, with fusiform to elliptical, unicellular, 2-guttules, rarely 1–, 3-guttules or eguttules alpha conidia, 5–11.5 × 2–4 µm, and filiform, curved, aseptate beta conidia, 16–22 × 1 µm (Mcpartland 1983).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthella ganjae* clustered in the *D. sojae* species complex. The type sequence of this species clustered with *D. sambucusii*, while another strain clustered with *D. compacta*.

Diaporthella gonzouensis C.M. Tian & Q. Yang, MycoKeys 77: 53 (2021)
Typification details – Holotype, BJFC C004; ex-type, CFCC 53087
Host – unknown dead wood
Distribution – Asia (China)
Notes – *Diaporthe ganzhouensis* was introduced based on morphological characters and multigene analysis (Yang et al. 2021). *Diaporthe ganzhouensis* is phylogenetically closely related to *D. wawdreyi*, however it has longer conidiophores (15.5–21 vs. 6–15 µm) and wider alpha conidia (2–2.5 vs. 1.5–2 µm) than the latter (Crous et al. 2015a, Yang et al. 2021).

Diaporthe gardeniae (Buddin & Wakef.) R.R. Gomes, Glienke & Crous, Persoonia 31: 22 (2013)
≡ *Phomopsis gardeniae* Buddin & Wakef., Gard. Chron., Ser. 3 103: 45 (1938)
Typification details – Holotype, CBS 288.56
Hosts – *Gardenia florida*, *G. jasminoides*, *Gardenias* sp. (Rubiaceae)
Distribution – Asia (India), Europe (England, Great Britain, Italy), North America (USA)
Notes – *Gardenia* canker is a disease caused by *Diaporthe gardeniae*. It has been reported within continental England, Italy, India, South America and the USA (Hansen & Barrett 1938, Alfieri 1967, Mathur 1979). *Diaporthe gardenia* can infect all parts of plants including roots and leaves, but they are mostly found on stems (Gomes et al. 2013). Initial symptoms of *Gardenia* Canker can be wilting, yellowing, shrivelling, and defoliation of leaves (Palmateer & Chase 2018). More details of symptoms/signs, biology and epidemiology, and disease management of *Gardenia* Canker can be seen in Palmateer & Chase (2018). *Diaporthe gardeniae* was recently reported as causing branch blight of *Gardenia jasminoides* in China by Fang et al. (2023) based on a pathogenicity test. Phylogenetic analyses based on ITS, cal, his3, tef1-a, tub2 indicated that *D. gardenia* is a distinct species in *Diaporthe* (Gomes et al. 2013).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe gardeniae* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Diaporthe garryae Grove, J. Bot., Lond. 71: 255 (1933)
Typification details – N/A
Host – *Garrya elliptica* (Garryaceae)
Distribution – Europe (England)
Notes – *Diaporthe garryae* was found on dead branches of *Garrya elliptica* from England (Grove 1933). However, we were unable to find the original description of the species. Sequence data is not available for this species.

Diaporthe genistae Rehm, Annls mycol. 11(2): 152 (1913)
Typification details – Holotype, Petrak s.n.
Host – *Genista pilosa* (Fabaceae)
Distribution – Europe (Czech Republic, Germany, United Kingdom)
Notes – *Diaporthe genistae* was introduced by Rehm (1913). This species was observed on branches of *Genista pilosa* from Germany. It comprises aggregated substroma, globose perithecia, with thick, elongated, cylindrical papillate at the upper layer, 8-spored, fusoid asci, 50 × 5 µm, filiform paraphyses, distichous, fusiform, straight, septate at the middle, not constricted, 2-guttules at each cell, hyaline spores, 10–12 × 2 µm (Rehm 1913). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe geographical Fuckel, Jb. nassau. Ver. Naturk. 27–28: 38 (1874) [1873–74]
Typification details – N/A
Host – *Syringa vulgaris* (Oleaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe geographical* was reported on *Syringa vulgaris* in Germany (Fuckel 1873). This species is characterized by irregular stroma, elongated spots, dark-brown, circumscribed by a black line, perithecia (spermatiiferis) immersed at the upper part of stroma, small, globose, with ovate to oblong, 2-guttules spermatia, 10 × 3 µm. The sexual morph comprises deeply immersed in
the stroma, globose, black perithecia, with cylindrical and prominent neck, 8-spored, lanceolate ascii, 64 × 8–9 µm, with fusiform, 1-septate, hyaline ascospores, with 4-guttules, 10–12 × 4–5 µm (Fuckel 1873). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe geranii Cooke & Harkn., Grevillea 14(no. 69): 8 (1885)
Typification details – Holotype, Harkness 2429
Host – *Geranium* sp. (Geraniaceae)
Distribution – North America (USA)
Notes – *Diaporthe geranii* was found on stems of *Geranium* in California, USA. This species is characterized by gregarious perithecia, immersed in bark, often black, subglobose, with short and emerged ostioles, clavate ascii, lanceolate, 4-nucleated, hyaline ascospores, 15–16 × 4 µm (Cooke & Harkness 1885). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe gillesiana Speg., Revta Fac. Agron. Vet. Univ. nac. La Plata, Ser. 2 6(1): 63 (1910)
≡ *Diaporthe gillesiana* Speg., Revista de la Facultad de Agronomía Universidad Nacional de La Plata 6 (1): 63 (1910)
Typification details – N/A
Host – *Lithrea caustica* (Anacardiaceae)
Distribution – South America (Chile)
Notes – *Diaporthe gillesiana* was found from the dead branch of *Lithrea caustica* in Chile. This species is characterized by small, globular brownish perithecia, cylindrical black carbonaceous ostiole, 8-spored, fusiform asci, 50 × 8 µm, cylindrical to subconical, 1-septate at the middle, barely constricted spores, 14–15 × 3.5–4 µm (Spegazzini 1910). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, SCHM, Cheng 3622
Host – *Bougainvillea glabra* (Nyctaginaceae)
Distribution – Asia (China)
Notes – *Diaporthe glabrae* was established from *Phomopsis glabrae*, the species found from branches of *Bougainvillea glabra* in Fujian Province, China (Chang et al. 2005a). The species is characterized by scattered, immersed in bark, erumpent at maturity, globose or triangle, olivaceous to brown conidiomata, with oblong to ellipsoidal, unicellular, hyaline, 2-guttules alpha conidia, 5.0–7.4 × 1.6–2.1 µm, and filiform, 1-celled, hyaline beta conidia, 13.5–22.5 × 0.6–1.0 µm (Chang et al. 2005a).

In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), the type strain of this species clustered with *D. alangii* (CFCC 52556), *D. tulliensis* (RST 1), *D. tectonae* (MFLUCC 14-1139, MFLUCC 12-0777T) and *D. hubeiensis* (JZB320123).

Diaporthe gladioli Ellis & Everh., J. Mycol. 2(9): 101 (1886)
Typification details – Holotype, NY, Langlois 390
Host – *Gladiolus* sp. (Iridaceae)
Distribution – North America (USA)
Notes – *Diaporthe gladioli* was recorded on dead stems of *Gladiolus* sp. in Louisiana, USA. This species is characterized by perithecia sunk in the substance of the stem just below the epidermis, which is blackened above them, forming elliptical, limited spots, few perithecia, often 1–2, sometimes 6–8 in a spot, asci with a substipitate base, 40 × 6–7 µm, biseriate, sub-fusoid, 2-nucleate, becoming 1-septate, hyaline ascospores, 7–10 × 2.5 µm. The ostiola project like slender,
black bristles, but are easily broken off (Ellis & Everhart 1886). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe glandulosa Rehm, Anns mycol. 6(4): 321 (1908)
Typification details – Holotype, Krieger s.n
Host – *Ailanthus glandulosa* (Simaroubaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe glandulosa* was reported on rotten branches of *Ailanthus glandulosa* in Germany. This species is characterized by having stromata, with solitary, scattered globose perithecia, sub prominent, black globose ostiole, 8-spored, ellipsoid asci, 45 × 8–9 µm, with filiform paraphyses, oblong, rounded on both sides, straight, 1-septate at the middle, not constricted, 1–2-guttules, hyaline spores, 12 × 3.5 µm (Rehm 1908). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, MFLU 23-0063; ex-type, MFLUCC 23-0025
Host – *Fagaceae* sp. (Fagaceae)
Distribution – Asia (Thailand)
Notes – The species was introduced by Monkai et al. (2023). It was found as a saprobe on dead leaves of a member of *Fagaceae* in Tak, Thailand. Phylogenetically, *Diaporthe globoostiolata* formed a lineage within *D. arceae* species complex, and basal to the clade contained *D. lithocarpi*, *D. rhodomyrti*, *D. salinicola*, and *D. hongkongensis* (Monkai et al. 2023). A detailed description and illustration of *D. globoostiolata* were given by Monkai et al. (2023).

Diaporthe gloriosa Sacc. & Speg., Michelia 1(no. 4): 390 (1878)
= *Phoma gloriosa* Sacc., Michelia 2(no. 7): 274 (1881)
= *Phomopsis gloriosa* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 221 (1906)
= *Phyllosticta gloriosa* (Sacc.) Allesch., Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1(6): 167 (1898)
Typification details – Holotype, PAD, Saccardo 1877
Host – *Yucca gloriosa* (Asparagaceae)
Distribution – Europe (Italy, Portugal, Spain)
Notes – *Diaporthe gloriosa* was reported on leaves of *Yucca gloriosa* in Italy. This species is characterized by oblong or irregular, small stroma, globose perithecia, ostiolate, 8-spored, clavate asci, 50 × 8–10 µm, a paraphysate, oblong to fusoid, obsoletely septate, constricted at the middle, 4-guttules, hyaline ascospores, 12–15 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe gorgonoidea Cooke & Harkn., Grevillea 13(no. 65): 18 (1884)
Typification details – Holotype, K(M), Harkness 2525
Host – *Acacia* sp. (Fabaceae)
Distribution – North America (USA)
Notes – *Diaporthe gorgonoidea* was reported on *Acacia* in California, USA. This species was found on wood covered with easily soluble bark, blackening the surface of the wood or broken crust, globose perithecia, immersed in the wood, usually crowded, with cylindrical, slender, winding ostioles, 8-spored, cylindrical to clavate asci, biseriate, fusiform, straight, 4-nucleate, finally 2–4-celled, hyaline ascospores, 15–17 × 3 µm (Cooke & Harkness 1884). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 59730a; preserved as metabolically inactive.
Host – *Sesbania* sp. (Fabaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe gossiae* was introduced by Tan & Shivas (2022) based on molecular data. In phylogenetic tree based on ITS, *tub2*, and *tef1*-α sequences, *D. gossiae* clustered in a well-supported clade and closely related to *D. pseudomangiferae* (Tan & Shivas 2022).

Typification details – Holotype, BRIP 55657a
Hosts – *Helianthus annuus* (Asteraceae), unidentified dead branch
Distribution – Asia (Thailand), Oceania (Australia)

Notes – *Diaporthe goulteri* was reported on *Helianthus annuus* in Queensland, Australia. Cinnamon-coloured exudates were produced in cultures of *D. goulteri* on PDA (Thompson et al. 2015). The asexual morph description is available in Thompson et al. (2015). The sexual morph was reported by Bundhun et al. (2021) from dead branch of an unidentified host in Thailand.
In the ITS phylogenetic tree of Norphanshoun et al. (2022, Fig. 3), *D. goulteri* (BRIP 55657a) was closely related to *D. hordei*. However, in the combined phylogenetic tree of the same study, *D. goulteri* (BRIP 55657a) clustered within the D. sojae species complex. It formed a sister clade to *D. ambigua* (CBS 114015) with moderate statistical support (78% ML).

Diaporthe grandiflori S.T. Huang, J.W. Xia, X.G. Zhang & Z. Li, MycoKeys 77: 75 (2021)
Typification details – Holotype, HSAUP194.84; ex-type, SAUCC194.84
Host – *Heterostemma grandiflorum* (Apocynaceae)
Distribution – Asia (China)

Notes – *Diaporthe grandiflori* was introduced by Sun et al. (2021) based on morphological characters and multigene analysis. It was found on infected leaves of *Heterostemma grandiflorum* in China. This species differs from its phylogenetically closely related species, *D. penetratum* in larger alpha conidia (6.3–8.3 × 2.8–3.3 vs. 4.5–5.5 × 1.5–2.5 μm) and longer beta conidia (21.5–30.5 × 1.5–2.1 vs. 16.5–27.5 × 1.0–2.0 μm) (Gao et al. 2016, Sun et al. 2021).

Diaporthe grammodes Sacc., Syll. fung. (Abellini) 1: 650 (1882)
Typification details – N/A
Host – *Artemisia vulgaris* (Asteraceae)
Distribution – Europe (Italy)

Notes – *Diaporthe grammodes* was reported from dried stems of *Artemisia vulgaris* in Italy. This species is characterized by immersed, small, globose to pyriform, perithecia, with erumpent ostiole, papillate, 8-spored, subclavate asci, 40 × 6.5 μm, ap paraphysate, fusoid, straight or curved, 4-guttules, hyaline ascospores, 12–14 × 2.7–3 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 67014a; preserved as metabolically inactive culture; ex-type, BRIP 67014a
Host – *Solanum melongena* (Solanaceae)
Distribution – Oceania (Australia)

Notes – *Diaporthe griseae* was isolated from fruit lesion of *Solanum melongena* and introduced based on molecular data (Tan & Shivas 2022). In phylogenetic tree based on ITS, *tub2*, and *tef1*-α sequences, *D. griseae* formed a sister clade with *D. vexans* (Tan & Shivas 2022).

Diaporthe griseotingens (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 646 (1882)
≡ *Sphaeria griseotingens* Berk. & M.A. Curtis, Grevillea 4(no. 32): 148 (1876)
Typification details – Holotype, Ravenel 6029
Host – *Juniperus virginiana* (Cupressaceae)
Distribution – North America (USA)
Notes – *Diaporthe griseotingensis* was first introduced as *Sphaeria griseotingensis* by Berkeley (1876) from *Juniperus virginiana* in Pennsylvania, USA. It was synonymized under *D. griseotingensis* by Saccardo (1882a). This species is characterized by small, sublinear, prominent, punctured ostioles, with clavate asci, and fusiform, unequal, hyaline, 20 long µm ascospores (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, ZHKUCC 20-0014; ex-type, ZHKUCC 20-0014

Host – *Citrus grandis* cv. Tomentosa (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe guangdongensis* was introduced by Dong et al. (2021a) based on morphological characters and multigene analysis. This species was found as an endophyte from *Citrus grandis* cv. Tomentosa fruits and develop both alpha and beta conidia. The alpha conidia are fusiform to ellipsoidial, aseptate, hyaline, with 2-large-guttules and beta conidia are filiform, aseptate, hyaline, curved at each end (Dong et al. 2021a). A detailed description and illustration of the asexual morph was provided by Dong et al. (2021a).

Typification details – Holotype, JZBH 320094

Host – *Vitis vinifera* (Vitaceae)

Distribution – Asia (China)

Notes – *Diaporthe guangxiensis* was reported from *Vitis vinifera* in Guangxi, China and introduced by Manawasinghe et al. (2019). The species is closely related to *D. cercidis* (CFCC52566). Morphologically, *D. guangxiensis* has larger conidiophores and smaller conidia than *D. cercidis* (Manawasinghe et al. 2019). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe guangxiensis* clustered in the *D. arecae* species complex.

Typification details – Holotype, GZAAS 20–0338; ex-type, GZCC 20-0338

Host – unknown dead wood

Distribution – Asia (China)

Notes – *Diaporthe guizhouensis* was introduced by Bhunjun et al. (2022), on decaying woody branch in Guizhou, China. Phylogenetically, *D. guizhouensis* has a close relationship with *D. araucanorum*, *D. foikelawen* and *D. pseudotsugae* (Bhunjun et al. 2022). However, it can be distinguished from *D. araucanorum* and *D. foikelawen* in having smaller alpha conidia (6–9 × 3–3.4 vs. 7–10.5 × 2–2.3 and 7–12.5 × 2.5–4 µm) (Zapata et al. 2020, Bhunjun et al. 2022). *Diaporthe pseudotsugae* was described based on sexual morph (Dissanayake et al. 2017b), thus the morphological comparison is not possible.

Typification details – Holotype, BRIP 54025 (S.M. Thompson T12505G)

Host – *Helianthus annuus* (Asteraceae)

Distribution – North America (Canada, USA: North Dakota), Oceania (Australia), Russia, South America (Argentina)

Notes – *Diaporthe gulyae* was introduced by Thompson et al. (2011). It causes severe stem canker on sunflower and saffron thistle. Phylogenetically, *D. gulyae* is closely related to *D. angelicae*, *D. stewartia*, *Phomopsis dauci* and *P. subordinaria* (*D. adunca*), however, it differs from these species in its pathogenicity and substrate preference (Thompson et al. 2011).
The pathogenicity test was confirmed by Thompson et al. (2011). Duellman et al. (2019) reported this species as a pathogen on common buckwheat and provided pathogenicity test data.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaporthe sojae species complex.

Typification details – Holotype, HKAS 107536; ex-type, CGMCC 3.20100 = GZCC 19-0140
Host – On decaying branch and woody
Distribution – Asia (China)

Notes – This species is only known from its holotype and paratype collections and it is saprobic on the decaying branch and woody (Dissanayake et al. 2020). The species has globose to conical, black ascomata, with long necks protruding through substrata, unitunicate, 8-spored, sessile, elongate to clavate asci, and elongated to elliptical, 2-celled, often 4-guttules (larger guttules at centre), hyaline ascospores. A detailed description of the sexual morph of this species was described by Dissanayake et al. (2020). The asexual morph was not observed.

In the phylogenetic tree of Dissanayake et al. (2020), this species is closely related to *D. angelicae, D. cichorii, D. gulyae* and *D. subordinaria*. Morphologically, *D. guttulata* differs from *D. cichorii* in having larger asci (50–8 μm vs. 45–6 μm) and ascospores (13–3 μm vs. 10–3 μm) (Castlebury et al. 2003, Dissanayake et al. 2020). However, *D. guttulata* cannot be compared to those of *D. gulyae* and *D. subordinaria* since the sexual morph of these two species have not been reported (Dissanayake et al. 2020).

Typification details – Holotype, NY, Nuttall May 1894
Host – *Halesia tetraperta* (Styracaceae)
Distribution – North America (USA)

Notes – *Diaporthe halesiae* was introduced by Ellis & Everhart (1894). It was found on dead branches of *Halesia tetraperta* in West Virginia, USA. This species is characterized by perithecia, loosely circinate, horn-color inside, becoming nearly black, sunk in the wood, necks converging with their obtuse, smooth, hemispherical ostiola erumpent in a close fascicle, closely surrounded by the ruptured epidermis, slender asci, 55–60 × 6–7 μm, with short-stipitate, and subbiseriate, fusoid to oblong, straight, nucleate, becoming 1-septate, slightly constricted, hyaline ascospores, 12–15 × 2.5–3 μm (Ellis & Everhart 1894). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe hamamelidis Fairm., Proc. Rochester Acad. Sci. 6: 125 (1922)

Typification details – Holotype, 189158
Host – *Hamamelis virginiana* (Hamamelidaceae)
Distribution – North America (USA)

Notes – *Diaporthe hamamelidis* was reported on trunks of *Hamamelis virginiana* in North America, USA. The species is characterized by globose conoid perithecia, forming under the outer bark and resting upon a thin reddish brown layer of tissue just over the wood, with minute, papilliform ostiole, 8-spored, clavate or cylindrical, with a moderately long stipe asci, 100–125 × 10–14 μm, filiform paraphysate, and biseriate, fusoid, 1-septate, constricted at the middle, 4 globose-nucleate, hyaline ascospores, 24–28 × 6–7 μm (adapted from Fairman 1922). Fairman (1922) noted that this species is not well-defined within the *Diaporthe* due to the morphology of its stroma, but its perithecia and spores are typical of *Diaporthe*. Sequence data is not available for this species.

Diaporthe hederae Wehm., Trans. Br. mycol. Soc. 17(4): 263 (1933)

Typification details – Holotype, MICH, Mason 751
Host – *Hedera helix* (Araliaceae)
Distribution – Europe (England)

Notes – *Diaportha hederae* was found on the dead twigs of *Hedera helix* in England and introduced by Wehmeyer (1933b). This species was seen mostly as decorticated areas of widely effused heavily blackened areas of the wood. Visible through the bark only as scattered exposed areas of this blackening or as isolated elongated ostioles. Perithecia are large, scattered singly within the wood and erumpent separately as conical to short cylindric or elongate sinuous ostioles. Perithecia often causes small papillate swellings on the surface. The ventral zone presents deep in the wood or as a blackening of the pith when the entire stem is entostromatic. Entostroma is widely available in Mathew et al. 2015.

Typification details – Holotype, CBS H-1540
Host – *Helianthus annuus* (Asteraceae)
Distribution – Asia (Japan), Europe (Bulgaria, Croatia, France, Italy, Serbia, Spain, Sweden, Ukraine, Yugoslavia), North America (USA), South America (Argentina, Brazil), Africa (South Africa).

Notes – The pathogen causing Phomopsis-stem canker on sunflower (*Helianthus annuus*) was known as *Diaportha helianthin*. This species was introduced by Muntanóla-Cvetkovic et al. (1981). This species is characterized by having conidiomata, usually aggregate, rarely solitary and beta conidia observed (Vrandečić et al. 2008). The sexual morph is characterized by sparse globose perithecia, 8-spored, elongated to elliptical asci, irregularly biseriate, subelliptical, slightly constricted at the septum, 1-septate ascospores (Vrandečić et al. 2008). Pathogenicity test data are available in Mathew et al. (2015).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaportha helianthi* clustered in the *D. sojae* species complex.

Typification details – Holotype, HSAUP194.77; ex-type, SAUCC194.77
Host – *Heliconia metallica* (Heliconiaceae)
Distribution – Asia (China)

Notes – *Diaportha heliconiae* was introduced by Sun et al. (2021), and found on the symptomatic petiole of *Heliconia metallica* in China. *Diaportha heliconiae* is phylogenetically close to *D. subclavata*, but it is different from the latter in having smaller alpha conidia (5.0–6.5 × 2.0–2.5 vs. 5.5–7.2 × 2.2–2.9 μm) (Huang et al. 2015, Sun et al. 2021)

Diaportha hemicrypta (Durieu & Mont.) Sacc., Syll. Fung. (Abellini) 2: XLIX (1883)

Typification details – N/A
Host – *Withania somnifera* (Syn. *Physalis somnifera*) (Solanaceae)
Distribution – North Africa (Algeria)

Notes – *Diaportha hemicrypta* was reported from *Withania somnifera* in Algiers, Algeria. This species is characterized by aggregate, globose, black perithecia, semi-immersed in the wood, with long, cylindrical, narrow, erumpent ostioles, oblong to subclavate asci, 50 × 12–13 μm, cymbiform, 3-septate (or rather 4-nucleated), hyaline spores, 10 × 2.5 μm (Saccardo 1883). The asexual morph is undetermined. Sequence data is not available for this species.
Typification details – Holotype, CBS H-23376; ex-type, CBS 143769 = CPC 26215
Host – *Acacia heterophylla* (Fabaceae)
Distribution – Europe (France)
Notes – *Diaporthe heterophyllae* was reported from leaves of *Acacia heterophylla* in France. Morphologically, *D. heterophyllae* differs from *D. eres* by having longer alpha conidia and shorter beta conidia. A detailed description of its asexual morph is available in Marin-Felix et al. (2018). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 2), this species clustered in the *D. eres* species complex (= *D. alnea* species complex).

Typification details – Holotype, HSAUP194.85; ex-type, SAUCC194.85
Host – *Heterostemma grandiflorum* (Apocynaceae)
Distribution – Asia (China)
Notes – *Diaporthe heterostemmatis* was isolated from infected leaves of *Heterostemma grandiflorum* in China. It is characterized by the production of two types of conidia which are alpha and beta conidia. The alpha conidia are ellipsoidal, aseptate, hyaline, with 2-guttules, and beta conidia are filiform, aseptate, hooked, mostly curved, hyaline, with few guttules (Sun et al. 2021). In the phylogenetic tree of Sun et al. (2021), *D. heterostemmatis* formed a distinct lineage.

Typification details – N/A
Host – *Hevea brasiliensis* (Euphorbiaceae)
Distribution – Asia (India, Sri Lanka), North America (Honduras), South America (Brazil)
Notes – *Diaporthe heveae* was reported from the branches of *Hevea brasiliensis* in Sri Lanka. This species is characterized by distinct, black perithecia, in small groups, embedded in the wood, neck projecting slightly above the surface of the bark, 8-spored, linear oval asci, 40–45 × 6–8 μm, obliquely uniseriate, fusoid, 1-septate, hyaline ascospores, 10–13 × 4 μm (Petch 1906). The asexual morph is undetermined.
In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), this species is sister to *D. coteae* (CBS 141330).

Diaporthe heveicola Senwanna, Cheewangkoon & K.D. Hyde, Mycosphere 12(1): 1407 (2021)
Typification details – Holotype, MFLU 19-0240; ex-type, MFLUCC 17-0329
Host – *Hevea brasiliensis* (Euphorbiaceae)
Distribution – Asia (Thailand)
Notes – *Diaporthe heveicola* was found on a dead branch of *Hevea brasiliensis* (Senwanna et al. 2021). This species is characterized by the sexual morph, which are immersed, papillate, ostiolate perithecial ascomata, septate, broad filiform paraphyses, unitunicate, elongate to clavate asci, hyaline, aseptate, elliptical to fusiform ascospores, with 2–4-guttules (Senwanna et al. 2021). The asexual morph is undetermined. *Diaporthe heveicola* can be distinguished from *D. heveae*, which was also reported on *H. brasiliensis*, in larger asci (36–63 × 6–10 vs 40–45 × 6–8 μm) and smaller ascospores (9–14 × 2.5–4.5 vs 10–15 × 4 μm) (Saccardo 1913a, Senwanna et al. 2021).

Typification details – Holotype, CBS 145.26
Host – *Carya glabra* (Juglandaceae)
Distribution – North America (USA)
Notes – *Diaporthe hickoriae* was reported from *Carya glabra* in the USA. The illustrations and descriptions of the asexual morph are available in Wehmeyer (1933a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe hickoriae* clustered in the *D. oncostoma* species complex, sister to *D. saccarata* (CBS 116311).

= *Phomopsis consocia* (E. Bommer, M. Rousseau & Sacc.) Died., Annls mycol. 9(1): 22 (1911)

Typification details – Holotype, Bommer & Rousseau, Jul. 1890
Host – *Hippophae rhamnoides* (Elaeagnaceae)
Distribution – Europe (Belgium, Germany, United Kingdom)

Notes – *Diaporthe hippophaes* was introduced by Bommer & Rousseau (1890). The species was found on dead branches of *Hippophae rhamnoides* in Belgium, associated with *Phoma consocia*. It is characterized by scattered stroma, with globose, 4–10 aggregated perithecia, with circumscribed black line, projecting, cylindrical ostiole which are often curved and diverging at the top, with cylindrical or subfusoid asci, 48–63 × 9 μm, containing cylindrical or fusoid, obtuse, 1-septate, slightly constricted, 4-guttules, hyaline ascospores, 12–16 × 4–5.5 μm, with shortly mucronate (Bommer & Rousseau 1890). Sequence data is not available for this species.

Typification details – Holotype, CBS H-23238; ex-type, CBS 143351 = CPC 30321
Host – *Vitis vinifera* (Vitaceae)
Distribution – Europe (Spain)

Notes – *Diaporthe hispaniae* was reported from the necrotic wood of *Vitis vinifera* in Spain (Guarnaccia et al. 2018). Phylogenetically, the species is closely related to *D. ampelina*, but morphologically different by its longer alpha conidia and larger beta conidia. A detailed description of the asexual morph is available in Guarnaccia et al. (2018). The sexual morph is undetermined. Pathogenicity test for this species is available in Guarnaccia et al. (2018).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe carpini* species complex, and sister to *D. hungariae*.

Typification details – Holotype, HKAS 122657; ex-type, KUMCC 21-0457
Host – *Mangifera indica* (Anacardiaceae)
Distribution – Asia (China)

Notes – *Diaporthe hongheensis* was introduced by Yang et al. (2022) based on morphological characters and multigene analysis. Morphological characters comprise fully immersed, non-papillate, ostiolate perithecial ascomata, septate, broadly cylindrical hamathecium, unitunicate, cylindrical asci, hyaline, aseptate, fusiform ascospores with two polar appendages. The asexual morph is undetermined. *Diaporthe hongheensis* differs from other *Diaporthe* in having 6(–8)-spores asci (Yang et al. 2022).

Diaporthe hongkongensis R.R. Gomes, Glienke & Crous, Persoonia 31: 23 (2013)

Typification details – Holotype, CBS H-21103; ex-type, CBS 115448 = HKUCC 9104
Hosts – *Dichroa febrifuga* (Hydrangeaceae), *Hyllocereus polyrhizus* (Cactaceae), *Prunus persica* (Rosaceae), *Actinidia spp.* (Actinidiaceae)
Distribution – Asia (Hong Kong)
Notes – *Diaporthe hongkongensis* was previously reported as *Phomopsis pittospori* on the fruit of *Dichroa febrifuga* from Hong Kong (Gomes et al. 2013). The asexual morph characters of this species were described and illustrated by Gomes et al. (2013). This species is known to cause stem end rot kiwifruit (Erper et al. 2017), shoot blight and leaf spot of kiwifruit (Du et al. 2021), and fruit rot disease on peach (Zhang et al. 2021). Further *D. hongkongensis* was reported as causing top blight of *Cunninghamia lanceolata* (Liao et al. 2023a) and shoot canker of pear (Guo et al. 2020). This species is characterized by producing pycnidial conidiomata on PDA, solitarily to aggregated globose with central ostiole. Alpha conidia are fusiform, granular to guttules, aseptate, tapering towards both ends, hyaline. Beta conidia are spindle-shaped, aseptate, hyaline, apex acutely rounded, base truncate, widest in mid region and mostly curved in the upper part. Gamma conidia are aseptate, hyaline, smooth, ellipsoid-fusoid, apex subobtuse and base truncate. The species was found to be a pathogen causing stem gray blight of *Hylocereus polyrhizus*, its pathogenicity was confirmed by Huda-Shakirah et al. (2021). Erper et al. (2017), Zhang et al. (2021), and Du et al. (2021) also confirmed the pathogenicity of this species on kiwifruits cv. Hayward and peach fruits.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe arecae* species complex.

Typification details – Holotype, IMI 128344
Host – *Hordeum vulgare* (Poaceae)
Distribution – Europe (Great Britain, Norway)
Notes – This species was introduced from *Hordeum vulgare* in Great Britain and morphological characters were described from the culture on PDA, with mycelium, whitish, with abundant ethereal mycelium; returned yellow with black spots, produced black, scattered pycnidia, stroma, single or multilocular, composed of a sporid exudate, produced fusiform, unicellular, hyaline, alpha conidia (phialospores), usually 2-guttules, 6–10 × 2–2.5 μm, with filiform, arcuate, hyaline beta conidia (phialospores), 18–30 × 0.5 μm, and ellipsoid, guttules gamma conidia, 9–13 × 1.5–2 μm. A detailed description of the asexual morph is available in Punithalingam (1975a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex.

Typification details – Holotype, BRIP 59697a; preserved as metabolically inactive culture; ex-type, BRIP 59697a
Host – *Agave* sp. (Asparagaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe howardiae* was introduced based on molecular data (Tan & Shivas 2022). This species was isolated from leaf spot of *Agave* sp. in Australia. In phylogenetic tree based on ITS, tub2, and ref1-a sequences, *D. howardiae* formed a distinct lineage and closely related to *D. podocarpi-macrophyll* (Tan & Shivas 2022).

Diaporthe hsinchuensis Ariyawansa & I. Tsai, *Plants* (Basel) 10(no. 1434): 8 (2021)

Typification details – Holotype, NTUPPMH 18-153-1; ex-type, NTUPPMCC 18-153-1
Host – *Camellia sinensis* (Theaceae)
Distribution – Asia (China, Taiwan)
Notes – *Diaporthe hsinchuensis* was introduced based on morphological characters and multigene analysis (Ariyawansa et al. 2021). *Diaporthe hsinchuensis* was phylogenetically closely related to *D. acutispora*, however it differs from the latter species in having smaller conidiophores
Typification details – Holotype, CNucc 201903; ex-type, CNucc 201903 = CFCC 53973
Host – Camellia oleifera (Theaceae)
Distribution – Asia (China)
Notes – Diaporthe huangshanensis was reported on leaves of Camellia oleifera in Anhui, China by Zhou & Hou (2019). Phylogenetically, Diaporthe anhuiensis and D. huangshanensis clustered together and close to D. arengeae (Zhou & Hou 2019). However, the alpha conidia and conidiophore of D. huangshanensis differs from those of D. anhuiensis and D. arengeae (Gomes et al. 2013, Zhou & Hou 2019). The conidiophores of D. huangshanensis are branched compared to D. anhuiensis (Zhou & Hou 2019).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe huangshanensis clustered in the D. arecae species complex.

Typification details – Holotype, JZBH 320123
Host – Vitis vinifera (Vitaceae)
Distribution – Asia (China)
Notes – Diaporthe hubeiensis was found from Vitis vinifera in Hubei, China (Manawasinghe et al. 2019). This species is known for its asexual morph. Pycnidia were observed on PDA, subglobose, solitary or in groups, with black cylindrical necks, produced ellipsoidal to cylindrical, 2-guttules, hyaline conidia, 6.1 × 1.8 µm, and filiform, tapering towards both ends of conidia, 24 × 1.5 µm (Manawasinghe et al. 2019). The sexual morph is undetermined. According to the comparative pathogenicity test, D. hubeiensis is the least aggressive on detached grape shoots (Manawasinghe et al. 2019).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe hubeiensis clustered in the D. sojae species complex.

Diaporthe humboldtiana Speg., Anal. Soc. cient. argent. 10(3): 139 (1880)
Typification details – Holotype, Spegazzini Jul. 1880
Host – Salix humboldtiana (Salicaceae)
Distribution – South America (Argentina)
Notes – Diaporthe humboldtiana was reported on Salix humboldtiana in Buenos Aires, Argentina. This species is characterized by loosely gregarious, membranaceous perithecia, immersed in the bark, black, with carbonaceous black conical ostiole, 8-spored, fusiform to clavate ascii, 50–60 × 7–8 µm, a paraphysate, elongate to elliptical, 1-septate, constricted at the middle, rounded at both ends, 4-guttules, hyaline ascospores, 13–14 × 4–5 µm (Spegazzini 1880c). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, UAMH 12076 (= CT2018-1)
Host – Humulus lupulus (Cannabinaceae)
Distribution – North America (Canada, USA)
Notes – Diaporthe humulicola was identified and described from leaves of Humulus lupulus in Connecticut, USA (Allan-Perkins et al. 2020). This species produced pycnidial conidiomata on leaves and ½ strength PDA, with solitary or aggregated, conical to globose or flask-like, ostioles, conidiophores reduced to conidiogenous cells, with unbranched, cylindrical conidiogenous cells, enteroblastic, monophialidic, cylindrical or clavate with obtuse ends, determinate, 1-celled,
Diaporthe hunanensis Q. Yang, MycoKeys 84: 26 (2021)
Typification details – Holotype, CSUFT 023; ex-type, HNZZ023
Host – Camellia oleifera (Theaceae)
Distribution – Asia (China)
Notes – Diaporthe hunanensis was introduced by Yang et al. (2021b) based on morphological characters and multigene analysis. This species was found on leaves of Camellia oleifera in China. Diaporthe hunanensis differs from its phylogenetically closely related species, D. drenthii and D. searlei in wider alpha conidia (2.4–2.9 vs. 1.5–2.5 and 1.5–2 μm) (Wrona et al. 2020), and D. spinosa in shorter alpha conidia (6.5–7.5 × 2.4–2.9 vs. 5.5–8 × 2–3.5 μm) (Guo et al. 2020, Yang et al. 2021b).

Typification details – Holotype, CBS H-23239; ex-type, CBS 143353 = CPC 30130
Host – Vitis vinifera (Vitaceae)
Distribution – Europe (Hungary, Spain)
Notes – Diaporthe hungariae was reported from the trunk of Vitis vinifera in Hungary (Guarnaccia et al. 2018). Conidiomata of this species produced white translucent to cream conidial cirrus or drops exuded from the ostioles. The species formed a well-supported separate clade in the phylogenetic analysis of Guarnaccia et al. (2018), however, based on the tub2 sequence similarity, it is closely related to D. ampelina. Diaporthe hungariae differs from D. ampelina in its larger conidiomata, longer alpha conidia and the absence of beta conidia which are normally observed in D. ampelina and D. hispaniae (Guarnaccia et al. 2018). See morphological details of asexual morph in Guarnaccia et al. (2018). The sexual morph of this species is undetermined. Pathogenicity test data is available for this species (Guarnaccia et al. 2018). The aggressiveness of D. hungariae on grape shoots was different compared to the other Diaporthe species isolated in Guarnaccia et al. (2018), which resulted in larger cankers and necrotic lesions.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaporthe carpini species complex.

Diaporthe hybrida S. Hilário & A. Alves, Fungal Biology 126: 62 (2022)
Typification details – Holotype, AVE F-12; ex-type, MUM 21.01 = CAA998
Host – Vaccinium corymbosum (Ericaceae)
Distribution – Europe (Portugal)
Notes – Diaporthe hybrida was isolated from diseased of Vaccinium corymbosum twigs in Santarém, Portugal (Hilário et al. 2022). This species is characterized by pycnidial conidiomata on pine needles or fennel twigs on ¼ strength PDA, mostly solitary with yellow conidial cirrus extruding from the ostioles, hyaline conidiophores, densely aggregated, cylindrical, straight to slightly curved with conidiogenous cells in the ends, hyaline paraphyses, subcylindrical, straight, 1-septate and branched, hyaline alpha conidia, aseptate, rarely found 2-guttules, hyaline beta conidia, aseptate, filiform, apex acute, slightly curved, while gamma conidia not observed. A detailed description of asexual morph of this species is available in Hilário et al. (2022). The sexual morph is not observed. Pathogenicity data for this species is unavailable.

In the his3 and cal single gene trees of Hilário et al. (2022), Diaporthe hybrida clustered with D. portugallica. However, in the tef1-α and tub2 trees, it clustered with both D. portugallica and D. phillipsii, as there were no nucleotide differences in the sequences among the tef1-α and tub2
loci. Additionally, *D. hybrida* shares polymorphisms in the ITS1 sequence with *D. phillipsii* and in the ITS2 sequence with *D. portugallica*. Therefore, *D. hybrida* was described from hybridization between *D. portugallica* and *D. phillipsii*. Morphologically, *D. hybrida* differs from *D. portugallica* and *D. phillipsii* in its larger alpha conidia (7.0 ± 0.6 × 2.4 ± 0.3 µm vs. 6.8 ± 0.7 × 2.2 ± 0.2 µm for *D. phillipsii* vs. 6.6 ± 0.8 × 2.2 ± 0.3 µm for *D. portugallica*) and in the presence of beta conidia, which is not known neither in *D. portugallica* nor in *D. phillipsii* (Guarnaccia & Crous 2017, Hilário et al. 2020, 2022).

Typification details – N/A
Host – *Hydrangeae arborescentis* (Hydrangeaceae)
Distribution – North America (USA)
Notes – Diaporthe hydrangeae was reported on *Hydrangeae arborescentis* from West Virginia, USA. The species is characterized by scattered, ovate to globose perithecia, completely innate on the substratum, with an unaltered surface, erumpent, conical to cylindrical ostiole, papilliform at the apex, 8-spored, oblong to cylindrical asci, 50–60 × 8 µm, obscurely paraphyses, biseriate, oblong to elliptical, 1-septate, slightly constricted, hyaline ascospores, 12–15 × 3–4 µm (Saccardo & Sydow 1899a). Sequence data is not available for this species.

Diaporthe hypoxyloides Saccardo & Sydow 1893

This species is characterized by single or few perithecia, immersed, subcircular black line around the epidermis (particularly the lower part), black, globose, with very short, conoid ostiole, scarcely exceeding the epidermis, 8-spored, fusoid, sessile asci, 40–50 × 7–8 µm, a paraphysate, light at the apex, bifoveolato, distichous, fusoid, 1-septate, scarcely constricted, indistinctly guttules, hyaline ascospores, 12–14 × 3 µm (Saccardo 1893). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe hypospilina Sacc. & Flageolet, Grevillea 21(no. 99): 65 (1893)

Typification details – Holotype, Flageolet s.n.
Host – *Mahonia aquifolium* (Berberidaceae)
Distribution – Europe (France)
Notes – Diaporthe hypospilina was reported on leaves of *Mahonia aquifolium* from France. This species is characterized by single or few perithecia, immersed, subcircular black line around the epidermis (particularly the lower part), black, globose, with very short, conoid ostiole, scarcely exceeding the epidermis, 8-spored, fusoid, sessile asci, 40–50 × 7–8 µm, a paraphysate, light at the apex, bifoveolato, distichous, fusoid, 1-septate, scarcely constricted, indistinctly guttules, hyaline ascospores, 12–14 × 3 µm (Saccardo 1893). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe hypoxyloides Rehm, Ascomyceten: no. 874 (1893)

Typification details – N/A
Host – *Acer* sp. (Sapindaceae)
Distribution – Europe (Germany)
Notes – Diaporthe hypoxyloides was found in the inner part of dead bark *Acer* sp. in Bohemian Forest (Böhmerwald), Germany (Saccardo 1891). This species is characterized by round or oblong stroma, often confluent, hyaline to brown and black on the outside. Perithecia nest on the stroma, deeply immersed, solitary, globose, 8-spored, fusoid asci, 60–66 × 7–8 µm, and cylindrical, obtuse, straight, 2–4 large nuclei, finally 2-celled, scarcely constricted in the middle ascospores, 12–15 × 3 µm, appendages at the apex on both sides (Saccardo 1891). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe hystricula Sacc. & Spèg., Michelia 1(no. 4): 392 (1878)

Typification details – Holotype, PAD, Spègazzini, Mar. 1877
Host – *Acer campestre* (Sapindaceae)
Distribution – Europe (Italy)
Notes – Diaporthe hystricula was reported on branches of *Acer campestre* in Italy (Saccardo 1878). This species is characterized by no obvious stromata, perithecia aggregated into small heaps, sparse, nesting on bark, globose, black, ostioles perforating the periderm in bundles, 8-spored, fusoid, acute on both sides, light bifoveolate asci, 40–45 × 6–7 µm, a paraphysate, spuriously 1-
 septate, 4-(multi)-guttules, hyaline ascospores, 12–14 × 2.5 μm, initially appendiculate on both sides, then absence (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe iberica Toghueo, Vazq-Alda & Zabalgo, Frontiers in Microbiology 14(no. 1105299): 8 (2023)

Typification details – Holotype, CECT 21218
Host – *Festuca pruinose, Celtica gigantea* (Poaceae)
Distribution – Europe (Spain)
Notes – *Diaporthe iberica* was introduced by Toghueo et al. (2023) based on molecular data. This species was associated with two host grasses (*Festuca pruinosa* and *Celtica gigantea*), which grow in very different habitats i.e., marine sea cliffs and sandy soils (Toghueo et al. 2023). *Diaporthe iberica* develops only black, globose or irregular stromata on the medium and host substrates without the production of conidia (Toghueo et al. 2023). In the phylogenetic tree of Toghueo et al. (2023), *D. iberica* formed a lineage clustered within the *D. sojae* species complex.

≡ *Metasphaeria ilicis* Ellis & Everh., Erythea 1: 145 (1893)
Typification details – Holotype, NY (Blasdale 86)
Host – *Ilex aquifolium* (Aquifoliaceae)
Distribution – Europe (England), North America (Canada, USA)
Notes – *Diaporthe ilicis* was first described as *Metasphaeria ilicis* and it was isolated from *Ilex aquifolium* in California, USA (Ellis & Everhart 1893b). This species is characterized by epiphyllous, on the living leaves the perithecia are thickly scattered on large, white (reddish-brown below) orbicular spots with a narrow reddish-brown border, but on the dead leaves, they are spread over the whole surface of the leaf, not in spots. Perithecia are globose, the apex strongly erumpent and covered by the mostly stellately cleft epidermis, above which the papilliform ostioium scarcely projects. Asci are oblong, abruptly contracted at the base into a short nodular stipe, paraphyses stout and below septate. Spores are biseriate, clypeate, hyaline, 27 × 6–7 μm (adapted from Ellis & Everhart 1893b). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, CBS 144318
Hosts – *Ilex verticillata × I. serrata* cultivar Bonfire (Aquifoliaceae)
Distribution – North America (USA)
Notes – *Diaporthe ilicicola* was isolated from the rotten fruit of deciduous holly (*I. verticillata × I. serrata*) in Ohio, USA (Lin et al. 2018). It is characterized by pycnidial conidiomata on PDA, erumpent, with solitary or aggregated, arranged in a circle at the edge of the colony, subcylindrical conidiophores, reduced to conidiogenous cells, subcylindrical conidiogenous cells, ovate to ellipsoid, aseptate, guttules, hyaline alpha conidia, while beta conidia not observed. A detailed of the asexual morph description was provided by Lin et al. (2018). The sexual morph was not observed. The pathogenicity test confirmed the species as pathogenic fungi causing fruit rot of deciduous holly (Lin et al. 2018). In the phylogenetic tree of Lin et al. (2018, Fig. 4), *D. ilicicola* clustered in the *D. iberica* species complex.

Typification details – N/A
Host – *Rumex crispus* (Polygonaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe immaculata* was found on the stems of *Rumex crispus* in Germany. The morphology was not mentioned in the original publication (Jaap 1910). The authors were unable to find any other description of the species. Sequence data is not available for this species.

Diaporthe immersa Nitschke, Pyrenomyc. Germ. 2: 270 (1870)
Typification details – N/A
Host – *Lappa minor* (Asteraceae)
Distribution – Europe (Germany)
Notes – *Diaporthe immersa* was reported from dead stems of *Lappa minor* in Germany (Nitschke 1870). This species is characterized by having very widely diffused, dirty-gray to dark brownish stroma, minute, globose or depressed perithecia, completely immersed in the uppermost layer of wood, with clavate, oblong asci, and thick fusiform, obtuse, straight, 1-septate, 4-guttules, hyaline ascospores, 13–14 × 3 μm. Spermogonia are numerous, scattered in the young stroma, unilocular, black, with fusiform spermatia, acute on both sides, straight, hyaline, 6–7 × 2–2.5 μm, with often 2-guttules. It produced very thin, filiform stylospores, 34 × 1 μm (Nitschke 1870). Sequence data is not available for this species.

Diaporthe immutabilis Cooke & Harkn., Grevillea 14(no. 69): 9 (1885)
Typification details – Holotype, Harkness 2463
Host – *Scrophularia* sp. (Scrophulariaceae)
Distribution – North America (USA)
Notes – *Diaporthe immutabilis* was reported from stems of *Scrophularia* in California, USA (Cooke & Harkness 1885). This species is characterized by irregular stroma, the surface of the stem scarce discoloured, with a black line below the wood, globose, scattered perithecia, with short ostiole, 8-spored, clavate asci, subulate, straight or curved, 1-septate, 2–4-guttules, hyaline ascospores, 12–14 × 4 μm (Cooke & Harkness 1885). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe importata Nitschke, Pyrenomyc. Germ. 2: 315 (1870)
≡ *Phoma importata* (Nitschke) Sacc., Michelia 2(no. 7): 380 (1881)
≡ *Phomopsis importata* Dietel, Annls mycol. 9(1): 24 (1911)
Typification details – N/A
Hosts – *Hyoscyamus albus*, *Lycium barbarum*, *L. chinense*, *L. intricatum* (Solanaceae)
Distribution – Europe (Czech Republic, Czechoslovakia, Germany, Italy, Portugal, Spain, United Kingdom)
Notes – *Diaporthe importata* was introduced by Nitschke (1870). The species was found on dead branches of *Lycium barbarum* in Höxter, Germany. The species has stroma, perithecia surrounded by blackening at a mature stage, slightly protruding and minute pustules covered periderm, short neck, punctiform ostiole, with 8-spored, sessile, narrowly oblong to subcylindrical asci, 66–75 × 9 μm, and fusiform, obtuse on both ends to acute, firstly 1-septate with 4-guttules, later become 2-septate, slightly constricted in the middle, subhyaline ascospores, 15 (rarely 12–18) × 4–5 μm (Nitschke 1870). The asexual morph was reported as *Phoma importata* by Saccardo (1881), with loosely gregarious perithecia, papillate, with terete to fusoid, obtuse on both sides, 2-guttules, hyaline spermatia, 7–8 × 2.5–3 μm, with acicular and fascicular basidia, 18–20 × 2 μm. Sequence data is not available for this species.

Diaporthe impulsa (Cooke & Peck) Sacc., Syll. fung. (Abellini) 1: 618 (1882)
Typification details – N/A
Host – *Sorbus aucuparia* (Rosaceae)

Diaporthe incarcerata (Berk. & Broome) Nitschke, Pyrenomyc. Germ. 2: 297 (1870) = Phoma depressa (Lév.) Sacc., Syll. fung. (Abellini) 3: 82 (1884) = Phoma incarcerata (Berk. & Broome) Sacc., Michelia 2(no. 6): 95 (1880) = Phomopsis depressa (Lév.) Traverso, Fl. ital. crypt. (Florence) 2(1): 272 (1906) = Phomopsis incarcerata Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 115: 681 (1906) ≡ Sphaeropsis depressa Lév., Annls Sci. Nat., Bot., sér. 3 5: 295 (1846) Typification details – Holotype, Bloxam s.n. Hosts – Rosa canina, R. elegantula, Rosa sp. (Rosaceae), Syringa sp., S. vulgaris (Oleaceae) Distribution – Africa (South Africa), Europe (Belgium, Czech Republic, Czechoslovakia, France, Germany, Italy, Poland, Portugal, Slovakia, The Netherlands, United Kingdom), North America (USA) Notes – The species was introduced as Diatrype incarcerata by Berkeley & Broome (1859) from the stems of roses in Great Britain. Nitschke (1870) synonymized the species under Diaporthe incarcerata. It was reported as causing dieback in rambler rose. The species has perithecia immersed in the brown inner bark, conical and elongated ostiole, clavate asci, biseriate, with oblong, 1-septate, quadrinucleate, constricted at the middle ascospores, 13 μm (Berkeley & Broome 1859). The asexual morph was reported as Phomopsis incarcerata. Sequence data is not available for this species.

Typification details – Holotype, HMAS 247088; ex-type, CGMCC 3.18288 = LC 6754
Host – *Elaeagnus glabra* (Elaeagnaceae)
Distribution – Asia (China)
Notes – *Diaporthe incompleta* was introduced by Gao et al. (2017) and it was isolated from leaves of *Elaeagnus glabra* in Yunnan, China. Morphologically, the species differs from other species of *Diaporthe* recorded from *Elaeagnus* by having longer beta conidia. The sexual morph is undetermined. For synoptic data please refer to table 3 in Gao et al. (2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe varians* species complex.

Diaporthe incompta Sacc., Michelia 2(no. 8): 595 (1882)

Typification details – N/A
Host – *Ampelopsis hederacea* (Vitaceae)
Distribution – Europe (France, Portugal)
Notes – *Diaporthe incompta* was found in corticated branches of *Ampelopsis hederacea* in France. This species is characterized by perithecia scattered or subaggregated, with erumpent and punctiform ostiole, 8-spored, terete-fusoid asci, truncate at the apex, tapering downwards, 60 × 8–10 µm, aparpaphysate, fusoid, straight or curved, 1-septate, very gently constricted, acute on both sides, 4-guttules, hyaline ascospores, 14–16 × 4 µm (Saccardo 1882b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe incongrua Ellis & Everh., N. Amer. Pyren. (Newfield): 456 (1892)

Typification details – Holotype, NY, anon. s.n.; NY, Langlois 494
Host – *Zea mays* (Poaceae)
Distribution – North America (USA)
Notes – *Diaporthe incongrua* was reported from decaying culms of *Zea mays* in Kansas and Louisiana, USA. This species is characterized by broadly effused stroma, nearly surrounding the culm, which it penetrates and blackens on the inner surface; the outside is also finely mottled with narrow-elliptical, dark-colored spots, lighter in the center, and so numerous and closely confluent as to cause the surface of the culm to appear, at first sight, as if uniformly blackened. The whole area is limited by a distinct black line, visible on the surface of the culm, especially at the ends, where the stroma is often prolonged in narrow strips. Perithecia are scattered or subcespiteose, sunk in the substance of the culm, black ostiola projecting, either singly or in little tufts of two or three together. Asci are lanceolate, 40 × 7–8 µm and biseriate, oblong to fusoid ascospores, 7–10 × 3 µm, 4-nucleate and yellowish, becoming constricted and 1-septate, ends rather obtusely pointed (adapted from Ellis & Everhart 1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe inconspicua R.R. Gomes, Glienke & Crous, Persoonia 31: 23 (2013)

Typification details – Holotype, CBS H-21102; ex-type, LGMF 930 = CPC 20306 = CBS 133813
Host – *Cyclopia longifolia* (Fabaceae), *Maytenus ilicifolia* (Celastraceae)
Distribution – Africa (South Africa), South America (Brazil)
Notes – *Diaporthe inconspicua* was first isolated as an endophyte of *Maytenus ilicifolia* in Brazil by Gomes et al. (2013). The morphological description for this species was not provided because the ex-type strain and other isolates were sterile in culture media (Gomes et al. 2013). Later, a pathogenicity test confirmed that this species is indeed a pathogenic fungus causing shoot blight disease in *Atriplex nummularia* in Brazil (de Queiroz et al. 2017). The authors also provided the asexual morph description for this species. Phylogenetically, *D. inconspicua* is related to *D. pterocarpi* but it morphologically differs from *D. pterocarpi* in the size of pycnidia, conidiophores, alpha conidia and the production of beta conidia.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe oncostoma* species complex.

Diaporthe incrustans Nitschke, Pyrenomyc. Germ. 2: 267 (1870)

* = *Phoma incrustans* (Nitschke) Sacc., Michelia 1 (5): 521 (1879)

Typification details – N/A

Hosts – *Brassica oleracea*, *Brassica* sp. (Brassicaceae)

Distribution – Europe (Germany, Denmark)

Notes – Initially, *Diaporthe incrustans* was identified as *Phoma incrustans* which was isolated from stems of *Brassica* sp. (Saccardo 1882). *Diaporthe incrustans* is characterized by diatrypous effuse stroma, with patches varying in size from one side to the other, soon the periderm pierced by innumerable ostiole. The part of the stromata immersed in wood is black-diatrypous effuse stroma, with patches varying in size from one side to the other, soon the periderm pierced by innumerable ostiole. The part of the stromata immersed in wood is black.

Diaporthe indica Sacc. & Speg., Michelia 1(no. 4): 391 (1878)

Typification details – Holotype, PAD, Saccardo, Oct. 1877

Host – *Millingtonia hortensis* (Bignoniaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe indica* was found from dead stems of *Millingtonia hortensis* in Italy. This species is characterized by stromata largely surrounding bark stems, globose perithecia, embedded in the wood, with the ostioles perforated the bark a little, 8-spored, fusoid asci, 40–50 × 8–9 µm, a paraphysate, with oblong, sessile on both sides, small, 1-septate, constricted, 2–4-guttules, hyaline ascospores, 14–15 × 4 µm (Saccardo 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe indigoferae E. Müll. & S. Ahmad, Biologia, Lahore 4: 25 (1958)

Typification details – N/A

Host – *Indigofera gerardiana* (Fabaceae)

Distribution – Asia (Pakistan)

Notes – *Diaporthe indigoferae* was reported from dead branches of *Indigofera gerardiana*. However, we were unable to find the original description of the species. Sequence data is not available for this species.

Diaporthe infecunda R.R. Gomes, Glienke & Crous, Persoonia 31: 24 (2013)

Typification details – Holotype, CBS H-21095; ex-type, LGMF 906 = CPC 20282 = CBS 133812

Hosts – *Maytenus ilicifolia* (Celastraceae), *Passiflora edulis* (Passifloraceae), *Schinus terebinthifolia* (Anacardiaceae)

Distribution – South America (Brazil)

Notes – *Diaporthe infecunda* was found as an endophyte from the leaves of medicinal plants (*Maytenus ilicifolia*, *Schinus terebinthifolia*) in Brazil (Gomes et al. 2013). Later, this species was recorded as a pathogen by causing Phomopsis-rot on flowers and fruits on *Passiflora edulis* (Gomes et al. 2013). Moreira et al. (2020) conducted a pathogenicity test and confirmed that this species is pathogenic on *P. edulis*. Initially, this species was sterile in culture (Gomes et al. 2013). However, Moreira et al. (2020) observed pycnidia on the fruit peel of *Passiflora edulis*, with curved, unicellular, hyaline beta conidia (Moreira et al. 2020).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex.

Diaporthe infertilis Guarnaccia & Crous, IMA Fungus 8(2): 327 (2017)
Typification details – Holotype, CBS H-23179; ex-type, CBS 230.52
Host – *Citrus sinensis* (Rutaceae). *Glycine max* (Fabaceae)
Distribution – Europe (Italy), South America (Brazil, Suriname)
Notes – *Diaporthe infertilis* was found from the decaying fruit of *Citrus sinensis* in Suriname. This species was sterile in culture and established based on molecular data (Guarnaccia & Crous 2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe infertilis* clustered in the *D. sojae* species complex.

Diaporthe inflatula Syd., Annls mycol. 35(3/4): 262 (1937)
Typification details – Holotype, Reinking 7980
Host – *Averrhoa bilimbi* (Oxalidaceae)
Distribution – Asia (The Philippines)
Notes – *Diaporthe inflatula* was isolated from dead branches of *Averrhoa bilimbi* in the Philippines. This species is characterized by small stromata, with 3–5 perithecia, aggregated and forming small scattered groups, cylindrical ostioles, often very curved, protruding through small fissures of the peridermis, 8-spored, oblong or cylindrical to fusoid asci, 30–45 × 5–6 µm, subdistichous, oblong or almost fusoid, slightly tapering on each side, obtusely rounded, middle 1-septate, scarcely or slightly constricted ascospores, 8–11 × 2.5–3 µm, with 1–2-guttules (Sydow 1937). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe innata (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 630 (1882)
Typification details – N/A
Host – *Castanea vesca* (Fagaceae)
Distribution – North America (USA)
Notes – This species was first identified as *Valsa innata* by Berkeley (1876). It was found on *Castanea vesca* in New York, USA (Saccardo 1882a). Saccardo (1882a) synonymized it under *Diaporthe innata*. It is characterized by perithecia with a short ostiole, filiform asci, and oblong, with acute on both sides ascospores, 7–8 long µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe inornata Peck, Bull. N.Y. St. Mus. 157: 47 (1912)
= *Chorostate inornata* (Peck) Sacc., Sylloge Fungorum 24 (2): 748 (1928)
Typification details – Holotype, Bartholomew s.n.
Host – *Rhus typhina* (Anacardiaceae)
Distribution – North America (USA)
Notes – *Diaporthe inornata* was isolated from dead branches of *Rhus typhina* in Maryland, USA. This species is characterized by 4–14 perithecia in a cluster, whitish within, nestling in the inner bark with no circumscribing black line, the long crowded black ostiola piercing and obliterating the cortical stroma, erumpent, surrounded by the ruptured remains of the epidermis, with subfusiform asci, 60–80 × 8–10 µm, and oblong or subfusiform, with a short bristle at each end, constricted at the septum ascospores, 15–24 × 3–4 µm, 2–4-nucleate (Peck 1912). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe insignis Fuckel, Jb. nassau. Ver. Naturk. 27–28: 36 (1873)
Typification details – N/A
Host – *Rubus fruticosus* (Rosaceae)
Distribution – Europe (Denmark, Germany, Poland)
Notes – *Diaporthe insignis* was isolated from rotting branches of *Rubus fruticosus* in Germany. This species is characterized by stromata, with a black circumscribing line. Spermatogonia scattered in the younger stromata, with oblong and hyaline spermatia, 8–10 × 4 µm, with 3-guttules. The sexual morph comprises scattered, globose, rather large, black perithecia, immersed in a stroma, with permanent, black, conical (rarely more elongated), cylindrical and short ostiole, 8-spored, elongate asci, 48 × 8 µm, and broadly fusiform, slightly curved, subobtuse on both sides, not constricted in the middle, hyaline ascospores, 12 × 4.5 µm, with 4-guttules (Fuckel 1873). Sequence data is not available for this species.

Diaporthe insularis Nitschke, Pyrenomyc. Germ. 2: 294 (1870)

Typification details – N/A

Host – *Quercus* sp. (Fagaceae)

Distribution – Europe (Germany, Italy)

Notes – *Diaporthe insularis* was found from branches and pedunculate of *Quercus* sp. *Diaporthe insularis* is characterized by stromata, with black subglobose perithecia, scattered or often densely packed, with a very short neck, and thin, elongated, cylindrical, piliform, flexuous ostiole, 8-spored, clavate asci, 56 × 9 µm, fusiformis or subcylindrical, obtuse on both sides, straight, 2-celled, rarely unequal ascospores, 12–16 × 3–4 µm, with 4-guttules (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

= *Phoma intermedia* Sacc., Mycotheca veneta 1: no. 21 (1874)

= *Phomopsis intermedia* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 223 (1906)

Typification details – N/A

Host – *Saponaria officinalis* (Caryophyllaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe intermedia* was found from stems of *Saponaria officinalis* in Italy. This species is characterized by stromata widely spread through the wood, with black circumscribing lines, subgregarious and immersed perithecia, cylindrical to conical ostioles, straight or suboblique, with 8-spored, oblong to fusoid asci, 50 × 6 µm, and obliquely monostichous, oblong to fusoid, finely constricted in the middle, obtuse on both sides, acuminate, hyaline ascospores, 12–14 × 3.5–4 µm, with 4-guttules. Spermogonia are spheroids. Spermata are fusoid, acute on both sides, 6 × 2.5 µm, 2-guttules, and filiform sterigma, 20 × 0.5µm (Saccardo 1882a). Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, Feb. 1882

Host – *Ipomoea carnea* (Convolvulaceae)

Distribution – Asia (India), South America (Argentina)

Notes – *Diaporthe ipomoeae* was found from rotten stems of *Ipomoea carnea* in Buenos Aires, Argentina. The species has brown to black stromata, widely spreads through the whole stems and barks, with a thin limited black line, immersed, globose and black perithecia, ostiole, papillate, 8-spored, fusoid to clavate asci, 50–55 × 5 µm, aparaphysate, and obliquely monostic, cylindrical to fusoid, obtuse on both sides, 1-septate at the middle, scarcely constricted, 1–2-guttules, hyaline ascospores, 10–12 × 3 µm (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HKAS 107537; ex-type, CGMCC 3.20092 = GZCC 19-0147

Host – On decaying branch

Distribution – Asia (China)
Notes – This species is saprobic on the decaying woody branch and is only known from its holotype and paratype specimens (Dissanayake et al. 2020). The species comprises scattered evenly on dead branches, immersed, globose to irregular, black ascomata, with unitunicate, 8-sспорed, sessile, elon
tate to clavate asci, and elongated to elliptical, 2-celled, often 4-guttules, with larger guttules at the center and smaller ones at ends, hyaline ascospores. A detailed description of the sexual morph was given by Dissanayake et al. (2020). The asexual morph is not observed.

In the phylogenetic tree of Dissanayake et al. (2020), this species formed a distinct clade from other Diaporthe species. Moreover, D. irregularis can be distinguished from other Diaporthe species by its shape and position of ascomata (Dissanayake et al. 2020).

Diaporthe isoberliniae Crous, Persoonia 32: 221 (2014)
- Typification details – Holotype, CBS H-21693; ex-type, CPC 22549 = CBS 137981
- Host – *Isoberlinia angolensis* (Fabaceae)
- Distribution – Africa (Zambia)

Notes – *Diaporthe isoberliniae* was isolated from *Isoberlinia angolensis* in Southern Africa, Zambia. This species has pycnidial conidiomata, globose, black, erumpent, exuding creamy conidial droplets from central ostiole, paraphyses not observed, aseptate, hyaline, smooth, guttules, fusoid to ellipsoid, tapering towards both ends, straight, apex subobtuse, base subtruncate alpha conidia. Gamma and beta conidia were not observed (Crous et al. 2014b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe oncostoma* species complex.

- Typification details – Holotype, MFLU 17-0311; ex-type, MFLUCC 18-0090, KUMCC 18-0002; isotype HKAS 1014; ex-isotype, MFLUCC 18-0091, KUMCC 18-0003
- Host – *Morus alba* (Moraceae)
- Distribution – Europe (Italy)

Notes – *Diaporthe italica* was introduced by Hyde et al. (2019), a saprobic fungus which was isolated from dead aerial branches of *Morus alba* in Italy. This species is characterized by immersed to semi-immersed black perithecia, with tapering perithecial necks, unitunicate, cymbiform to clavate asci, 45–55 × 6–8.5 µm, biseriate, fusiform to allantoid, slightly curved, 1-septate at the middle, hyaline ascospores, 10.5–13 × 2.7–4.5 µm (Hyde et al. 2019). The species can be differentiated from its sister taxon *D. rudis* in having smaller asci and ascospores (Hyde et al. 2019). The asexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe rudis* species complex.

Diaporthe italica Sacc. ex Traverso, Syll. fung. (Abellini) 17: 671 (1905)
- Typification details – Holotype, Saccardo, Mar. 1874
- Host – *Populus alba* var. *pyramidalis* (Salicaceae)
- Distribution – Europe (Italy)

Notes – *Diaporthe italic*a was isolated from dead branches of *Populus alba* var. *pyramidalis* in Italy. This species has stromata scattered or gregarious, flattened conical or ellipsoid base. Perithecia are 4–8 in a stroma, subglobose, with tapered cylindrical neck, black ostiole pierced through the periderm, tip often thickened, 8-sспорed, cylindrical to clavate or oblong asci, bifoveolate at the tip, 40–48 × 7–8 µm, obliquely monostichous, ellipsoid to fusiform, 1-septate, not constricted, 4-guttules, hyaline ascospores, 11–12 × 3–3.5 µm (Saccardo & Saccardo 1905). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe jaffuelii Speg., Boln Acad. nac. Cienc. Córdoba 25: 63 (1921)
Typification details – Holotype, Spegazzini, 1917
Host – *Lapageria rosea* (Philesiaceae)
Distribution – South America (Chile)

Notes – *Diaporthe jaffuelii* was isolated from vine shoots of *Lapageria rosea* in Atacama, Chile. This species is characterized by stromata with black stromatic lines, with small lenticular, immersed in wood bark, membranaceous perithecia, a thin carbonaceous, acutely papillate ostiole, 8-spored, moderately fusoid asci, 45–50 × 10 µm, aparaphysate, with elliptical to biconical, slightly unequal, obtuse on both sides, 1-septate, constricted at the middle, 2-guttules, smooth, hyaline ascospores, 12–15 × 4 µm (Spegazzini 1921). The asexual morph is undetermined. Sequence data is not available for this species.

= *Phoma japonica* (Sacc.) Sacc., Michelia 1 (5): 521 (1879)
= *Phomopsis japonica* (Sacc.) Traverso, Flora Italica Cryptogama 1: 241 (1906)

Typification details – N/A
Host – *Kerria japonica* (Rosaceae)
Distribution – Europe (Italy), North America

Notes – *Diaporthe japonica* was isolated from branches of *Kerria japonica* in Italy. This species is characterized by perithecia, with 45–50 × 7–9 µm asci, and 14–15 × 4 µm spores. Spermagonia are small and black, nesting beneath the epidermis, sometimes oblong to lenticular, surrounded by a black bordering zone. Spermatia are ovoid, hyaline, 6 × 3 µm, 2-guttules, filiform sterigmata (Saccardo 1875). Sequence data is not available for this species.

Diaporthe javanica Penz. & Sacc., Malpighia 11(11–12): 503 (1898)

Typification details – Holotype, Penzig 421
Host – *Elettaria* sp. (Zingiberaceae)
Distribution – Asia (Indonesia)

Notes – *Diaporthe javanica* was isolated from dead stems of *Elettaria* in Java, Indonesia. This species is characterized by gregarious, immersed, globose, black perithecia, punctiform ostioles, with 8-spored, fusoid asci, 30–35 × 6 µm, aparaphysate, and indirectly monostices, oblong, obtuse on both sides, constricted in the middle, obsoletely septate, hyaline ascospores, 10–12 × 4–5 µm, with 4-guttules (Penzig & Saccardo 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe jeffuelii Speg. [as ‘jeffueli’], Boln Acad. nac. Cienc. Córdoba 25: 63 (1921)

Typification details – Holotype, Spegazzini, 1917
Host – *Lapageria rosea* (Philesiaceae)
Distribution – North America (USA)

Notes – *Diaporthe leucheriicola* was found from the dead shoots of *Lapageria rosea* in California, USA (Spegazzini 1921). This species is characterized by stromata, with small, lenticular, immersed perithecia, papillate, ostiolate, with 8-spored, fusoid asci, 45–50 × 10 µm, aparaphysate, elliptical to biconical, obtuse at both ends, 1-septate, constricted in the middle, 2-guttules, hyaline ascospores, 12–15 × 4 µm (Spegazzini 1921). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HMAS 249837; ex-type, CGMCC3.20269
Host – *Prunus persica* cv. Zaofenghuang (Rosaceae)
Distribution – Asia (China)
Notes – *Diaportha jinxu* was introduced by Wang et al. (2021) based on morphological characters and multigene analysis. It was associated with peach constriction canker in China (Wang et al. 2021). *Diaportha jinxu* is phylogenetically closely related to *D. rhoina*, however its conidiomata are smaller than the latter (386–807 vs. 500–2500 µm) (Feltgen 1901, Wang et al. 2021).

Diaportha juglandicola Qin Yang, Mycosphere 8(5): 821 (2017)

Typification details – Holotype, BJFC-S1342; ex-type, CFCC 51134
Host – Juglans mandshurica, *J. regia* (Juglandaceae)
Distribution – Asia (China)
Notes – *Diaportha juglandicola* was found as a pathogen on twigs and branches of *Juglans mandshurica* in Beijing, China with both sexual and asexual morphs. It is different from *D. rostrata*, which was also reported from *Juglans mandshurica* in China, by having smaller asci, ascospores and bigger perithecia (Yang et al. 2017b).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaportha carpini* species complex.

Diaportha juglandina (Fuckel) Nitschke, Pyrenomyc. Germ. 2: 281 (1870)
≡ *Aglaospora juglandina* Fuckel, Fungi Rhenani Exsiccati Cent. XXII 22: Fung. Rhen. no 2156 (1868)
≡ *Phoma juglandina* (Fuckel) Sacc., Michelia 1 (no. 5): 521 (1879)

Host – *Juglans regia* (Juglandaceae)
Distribution – Asia (China, Pakistan), Europe (Germany), North America (USA)
Notes – *Diaportha juglandina* was initially isolated from the bark of twigs of *Juglans regia* in Germany. This species has perithecia arranged in order, usually scattered, globose, rarely depressed, with 8-spored, clavate to oblong asci, 51–64 × 7–8 µm, and fusiform, acute on both sides, straight, 2-celled, constricted in the middle, 4-guttules, hyaline ascospores, 16–18 × 4–5 µm at maturity. Spermogonia phomatoidea, with fusoid, 2-guttules and 8–9 × 2 µm spermatia (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaportha juniperi Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 149 (1903)

Typification details – N/A
Host – *Juniperus communis* (Cupressaceae)
Distribution – Europe (Luxembourg)
Notes – *Diaportha juniperi* was introduced by Feltgen (1903). It was isolated from the bark of *Juniperus communis*. This species is characterized by scattered stromata, globose, frustoconical at the base, epidermis with a thin browned layer of bark, bulging upwards, piercing with the black, broad disk, with globose perithecia, nestling in the unaltered bark, with short conical necks, 8-spored, cylindrical or cylindrical to narrowly clavate asci, rounded at the top, stalked, 90–120 × 7–8 µm, aparaphyses, uniseriate, ellipsoidal, straight or curved, 1-celled, or with a very thin hyaline transverse wall in the middle, hyaline ascospores, 10–13–16 × 5–6 µm, with very shiny oil droplets (Feltgen 1903). The asexual morph is undetermined. Sequence data is not available for this species.

≡ *Phomopsis juniperivora* G.G. Hahn [as ‘juniperovora’], Phytopathology 10: 249 (1920)

Typification details – N/A
Hosts – *Juniperus virginiana, Cupressus* spp. (Cupressaceae), other Conifer species
Distribution – Africa (Kenya, South Africa), Europe (Denmark, France, Poland), North America (USA), Oceania (New Zealand)
Notes – *Diaporthe juniperivora* was initially reported from the branches and leaves of *Juniperus virginiana* in North America, USA. This species has carbonaceous lenticular pycnidia, with oblong to ellipsoid or fusoid, 2-guttules, hyaline conidia, 6.5–12 × 1.8–3.5 μm (Saccardo et al. 1931). A detailed description was provided by Saccardo et al. (1931). The ITS sequences are available in NCBI, but the placement of this species is still unclear.

Typification details – Holotype, BPI; isotype, DUKE

Hosts – *Kalmia latifolia*, *Kalmia sp.*, *Rhododendron maximum* (Ericaceae)

Distribution – North America (USA)

Notes – The species caused leaf blight disease and was introduced by Wolf & Cavaliere (1965). In the early stages of the attack, tiny brown discolorations are observed on young leaves. These lesions gradually enlarge and become brown spots (Wolf & Cavaliere 1965). Enlows (1918) noted that the species may eventually kill the entire plant. *Diaporthe kalmiae* produced large numbers of pycnidia on diseased leaves in damp chambers, with sclerotia-like bodies. A detailed morphological description of this species is available in Enlows (1918). Sequence data is not available for this species.

Diaporthe kellermaniana G. Winter [as ‘kellermaniana’], Bull. Torrey bot. Club 10: [49] (1883)

Typification details – N/A

Host – *Zea mays* (Poaceae)

Distribution – North America (USA)

Notes – *Diaporthe kellermaniana* was isolated from *Zea may* in Kentucky, USA. This species is characterized by deeply embedded, depressed globose, membranous, black perithecia, 8-spored, oblong to fusoid asci, 30–40 × 5–7 μm, with oblong, 1-septate, not constricted, often unequal, both sides rounded or slightly acute ascospores, 9–11 × 3–3.5 μm, with 4-guttules (Winter 1883). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe kentrophylli Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 362 (1909)

Typification details – Holotype, LPS, Spegazzini, Sept. 1907

Host – *Kentrophyllum lanatum* (Asteraceae)

Distribution – South America (Argentina)

Notes – *Diaporthe kentrophylli* was introduced by Spegazzini (1909). The species was found from stems of *Kentrophyllum lanatum* in Buenos Aires, Argentina. It is characterized by immersed, globular, membranaceous olivaceous perithecia, with carbonaceous black ostiole, 8-spored, subfusoid asci, 50–60 × 8–10 μm, aparaphysate, cylindrical to fusoid, 1-septate, 4-guttules, hyaline ascospores, 15–16 × 3.5–4 μm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe ketmiae (Ces.) Traverso, in Saccardo, Syll. fung. (Abellini) 1: 694 (1882)

Typification details – N/A

Host – *Hibiscus syriacus* (Malvaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe ketmiae* was initially introduced as *Sphaeria ketmiae* from branches of *Hibiscus syriacus* in Italy. However, this species is characterized by having a cluster of globose perithecia, long, 8-spored asci, 50–60 × 9–10 μm, fusoid, 1-septate, 4-guttules, hyaline ascospores, 12–13 × 4–5.5 μm, (Saccardo 1882a). Sequence data is not available for this species.

Typification details – Holotype, BRIP 54033
Host – Helianthus annuus (Asteraceae)
Distribution – Oceania (Australia)

Notes – Diaporthe kochmanii was isolated from Helianthus annuus (experimental line) in Australia. This species is characterized by perithecia that develop on both PDA and on sterilised stems of sunflower, surrounded by a black ectostroma, with 1 or more cylindrical, black ostiolate, 8-spored, unitunicate, cylindrical, hyaline asci, with conspicuous refractive apical ring, containing biseriate, oval to cylindrical, septate at the middle, not constricted, hyaline ascospores, with 1-guttules in each cell. The asexual morph has pycnidial conidiomata, scattered on PDA, black, subglobose, with 1 or more cylindrical black ostiolate necks, oval to cylindrical, and beta conidia are flexuous to lunate, with mostly curved and hyaline alpha conidia. A detailed description of its asexual morph is available in Thompson et al. (2011).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaporthe sojae species complex.

Diaporthe koelreuteriae (Durieu) Sacc., Syll. fung. (Abellini) 1: 694 (1882)
≡ Sphaeria koelreuteriae Durieu, Fungi Selecti Galliaei Exs.: no. 287 (1879)
Typification details – N/A
Host – Koelreuteria paniculata (Sapindaceae)
Distribution – Asia (Pakistan), Europe (France)

Notes – Diaporthe koelreuteriae was isolated from branches of Koelreuteria paniculata in France. Saccardo (1882a) described this species as having punctiform perithecia and oblong to cylindrical spermatia, 4 × 1–2 µm. However, the specimens were not mature enough to observe other characters (Saccardo 1882a). Sequence data is not available for this species.

Diaporthe kokiae Petr., Sydowia 7(5–6): 384 (1953)
Typification details – Holotype, Shear & Stevens 955
Host – Kokia rockii (Malvaceae)
Distribution – North America (USA)

Notes – Diaporthe kokiae was isolated from Kokia rockii in Hawaiian Island, USA (Petra 1953). This species was characterized by having stroma widely diffused, usually surrounding the petioles, blackish, with irregularly scattered perithecia, and erumpent, short, cylindrical to conical ostiole, subfusoid or fusoid to clavate asci, tapering on both sides, obtuse, sessile, 28–32 × 5–7 µm, and biconical or subfusoid, straight, rarely unequal or curved, 1-septate at the middle, scarcely constricted ascospores, 6–8 × 2–2.8 µm, with 1–2-guttules at each cell (Petra 1953). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 54031
Host – Helianthus annuus (Asteraceae)
Distribution – Oceania (Australia)

Notes – Diaporthe kongii was isolated from stem cankers of Helianthus annuus in Queensland, Australia. This species is characterized by pycnidial conidiomata, scattered on PDA, subglobose, with short ostiolate beaks smooth, towards the apex and often covered with short unbranched hyphae, surrounded by a black ectostroma, produced oval to cylindrical, 2-guttules, hyaline alpha conidia, and sigmoid to lunate, mostly curved beta conidia (Thompson et al. 2011). The sexual morph is undetermined. The pathogenicity test confirmed that D. kongii causes stem canker on sunflowers (Thompson et al. 2011).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaporthe sojae species complex.
Diaporthe krabiensis Dayarathne ex S. Hongsanan & K.D. Hyde, sp. nov.

Index Fungorum number: IF900762; Facesoffungi number: FoF14508

Typification details – Holotype, MFLU 17-2681; isotype HKAS102052; ex-type MFLUCC 17-2481

Host – *Bruguiera* sp. (Rhizophoraceae)

Distribution – Asia (Thailand)

Notes – *Diaporthe krabiensis* was first introduced by Dayarathne et al. (2020) based on morphology and phylogeny. However, it was shown as invalid in Index Fungorum (2023, Nom. inval., Art. F.5.1 Shenzhen). In this study, we hereby validly establish the same species name to accommodate this taxon. This species was found from decaying submerged wood of *Bruguiera* sp. in Thailand. This species has scattered, globose or irregular, black pycnidial or multiloculate conidiomata, paraphyses, with fusiform to hooked, aseptate, hyaline, smooth-walled beta conidia, while alpha and gamma conidia were not observed. A detailed description of its asexual morph is available in Dayarathne et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe krabiensis* clustered in the *D. arecae* species complex.

Diaporthe kriegeriana Rehm, Annls mycol. 6(4): 321 (1908)

Typification details – Holotype, Krieger s.n.

Host – *Aesculus hippocastanum* (Sapindaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe kriegeriana* was isolated from dead branches of *Aesculus hippocastanum* in Germany. This species is characterized by widely spreads stroma, ostiolute, the bark colored, and the wood inwardly bounded with a black stroma, globose, rarely scattered, usually 2–5 tightly gathered perithecia, forming at the upper part of the wood, elongated neck, with conical ostioles cylindrical at the base, straight, more prominent, 8-spored, fusoid asci, 50–55 × 9 µm, filiform paraphyses, and fusiform, 1-septate at the middle, constricted, hyaline ascospores, 12–14 × 4 µm, with 1–2-guttules at each cell (Rehm 1908). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, VLA, Vasilyeva, 3 Aug. 1987

Host – *Hydrangea paniculata* (Hydrangeaceae)

Distribution – Russia

Notes – *Diaporthe kunashirensis* was isolated from the dead branches of *Hydrangea paniculata* in Kuril Island, Russia. However, we were unable to find the original description of the species. Sequence data is not available for this species.

Diaporthe kunzeana Sacc., Nuovo G. bot. ital. 8(2): 181 (1876)

Typification details – N/A

Host – *Carpinus betulus* (Betulaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe kunzeana* was reported on the branches of *Carpinus betulus* in Italy. It is characterized by blackened perithecia with fusoid asci, 70–80 × 10 µm, a paraphysate, and biconical to fusoid, 1-septate, gently constricted in the middle, hyaline ascospores, with 4-guttules, 16–19 × 3.5–4 µm. Spermogonia are conoid-depressed, 1 locular, with oblong to fusoid spermatia, 10–11 × 3 µm, 4-guttules (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe kyushuensis Kajitani & Kanematsu, Mycoscience 41(2): 112 (2000)

Typification details – Holotype, TMF 7494
Host – *Vitis vinifera × V. labrusca* (Vitaceae)
Distribution – Asia (Japan)

Notes – *Diaporthe kyushuensis* was introduced by Kajitani & Kanematsu (2000) causing grapevine swelling arm disease on the grapevine cultivar Kyohou (*Vitis vinifera L. × V. labrusca* L.) in Japan. The morphology of the sexual morph was described in the original publication, which includes subglobose perithecial ascomata with a long neck, clavate or cylindric-clavate asci, 89–117 × 13–20 µm and 1-septate, ellipsoid ascospores, 15.5–21.5 × 8.5–11 µm, sometimes with faint hyaline appendages on both sides. Based on conidial morphology and ITS sequence data similarity, Kajitani & Kanematsu et al. (2000) reported the asexual morph of this species as *Phomopsis vitimegaspora*, which sporulated on PDA media, and produced fusoid, unicellular, hyaline alpha conidia, 15.5–24 × 4.5–8 µm, and filiform, hooked, unicellular, hyaline beta conidia, 25–55 × 1–2 µm (Kajitani & Kanematsu 2000). Although *D. kyushuensis* was synonymized under *D. vitimegaspora* by Rossman et al. (2015), the morphology of asexual morph of *D. vitimegaspora* has smaller alpha conidia, (10–)13–18(–22) × (3–)4–5(–6) µm, and beta conidia, (21–)26–34(–40) × 0.5–1 µm (Kuo & Leu 1998). Therefore, we treat both species as distinct species. More taxon-sampling as well as more informative genes are required for a better understanding of their placement and sexual-axexual morph relationships.

Typification details – Holotype, SCHM, Chang 3608
Host – *Lagerstroemia indica* (Lythraceae)
Distribution – Asia (China)

Notes – *Diaporthe lagerstroemiae* was isolated from branches *Lagerstroemia indica* in Hunan Province, China. It is characterized by scattered, immersed conidiomata consisting of hyaline, unicellular alpha conidia, and hyaline, filiform beta conidia (Chang et al. 2005b). Chang et al. (2005b) mentioned that this species is very similar to *Phomopsis lirelliformis*, with a few differences in conidiophores and conidia (Chang et al. 2005b). The sexual morph is undetermined.

In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), this species formed a distinct lineage within *Diaporthe*.

Diaporthe lagunensis Syd. & P. Syd., Annls mycol. 18(1/3): 99 (1920)

Typification details – Holotype, Serrano 6156
Host – *Allamanda hendersonii* (Apocynaceae)
Distribution – Asia (The Philippines)

Notes – *Diaporthe lagunensis* was found from stalks of *Allamanda hendersonii* in the Philippines. This species is characterized by stromata, with a few (2–4) perithecia in clustered, 8-spored, cylindrical to fusoid asci, 40–50 × 6–9 µm, aeparaphysate, distichous, oblong, slightly tapering on both sides, but obtuse at the tips, middle 1-septate, gently constricted, 4-guttules, hyaline ascospores, 11–14 × 3–4 µm (Sydow & Sydow 1920). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe landeghemiae (Westend.) Nitschke, Pyrenomyc. Germ. 2: 318 (1870)

≡ *Diaporthe landeghemiae f. landeghemiae* (Westend.) Nitschke, Pyrenomyc. Germ. 2: 318 (1870) (Westend.) Nitschke 1870

≡ *Phoma landeghemiae* (Westend.) Sacc., Syll. fung. (Abellini) 3: 71 (1884)
≡ *Sphaeria laneghemiae* Westend., in Kickx, Fl. Crypt. Flandres (Paris) 1: 343 (1867)

Typification details – N/A
Host – *Philadelphus coronaries*, *Philadelphus* sp. (Hydrangeaceae)
Distribution – Europe (Belgium, Germany)
Notes – This species was found on *Philadelphus coronaries* in Belgium, and was introduced using morphological data. It is characterized by having oblong to subcylindrical asci, 60–66 × 9–10 µm, with fusiform ascospores, 14–16 × 4 µm (Nitschke 1870, Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe larseniana Munk, Dansk bot. Ark. 14(no. 8): 3 (1952)
Typification details – N/A
Host – *Picea abies* (Pinaceae)
Distribution – Asia (Japan), Europe (Denmark, Poland)
Notes – *Diaporthe larseniana* was introduced by Munk (1952). It was found from dead *Picea abies* in Denmark. This species is characterized by having pustulate stromata which are immersed in the bark and this causes slight elevations of the epidermis, with pustule and circinatea ascomata, 8-spored, cylindrical to clavate asci, with distinct apical structure, contained rounded fusiform, hyaline, 2-celled, slightly constricted at septum ascospores (Hayova 2011). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe laschii Nitschke, Pyrenomyc. Germ. 2: 292 (1870)
Typification details – N/A
Host – *Euonymus europaeus* (Celastraceae)
Distribution – Europe (Poland, United Kingdom, Ukraine, Denmark, Germany, Sweden)
Notes – *Diaporthe laschii* was found on dead branches of *Euonymus europaeus* in Poland. The species is characterized by widely spread-out stroma, with large, usually loosely scattered, globose perithecia, nestling in the parenchyma of the bark, tapering to the neck, cylindrical and conical at the base of ostiole, 8-spored clavate to oblong asci, 54–60 × 8 µm, and fusiform, obtuse on both sides, mostly straight, 2-celled, 2–4-guttules, hyaline ascospores, 14–16 × 3 µm (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HKAS 107538; ex-type, CGMCC 3.20101 = GZCC 19-0145
Host – On decaying woody branch
Distribution – Asia (China)
Notes – *Diaporthe lenispora* is saprobic on the decaying woody branch and is only known from its holotype and paratype specimens (Dissanayake et al. 2020). The species is characterized by black scattered irregularly, globose to conical ascomata, long necks protruding through substrata, unitunicate, 8-spored, sessile, elongate to clavate asci, contained elongated to elliptical, 2-celled, often 4-guttules, with larger guttules at the centre and smaller one at ends, hyaline ascospores. A detailed description of its sexual morph is available in Dissanayake et al. (2020). The asexual morph of this species is not observed.

In the phylogenetic tree, *D. lenispora* is closely related to *D. vawdreyi*. It can be distinguished from the latter species based on ITS, tefl-α and tub2 sequence data. However, the morphological characteristics of *D. lenispora* cannot be compared to *D. vawdreyi* since the sexual morph of *D. vawdreyi* has not been reported (Crous et al. 2015a, Dissanayake et al. 2020).

≡ *Cryptosporrella lentaginis* Rehm, in Ellis, Am. Nat. 17(1): 195 (1883)
≡ *Cryptospora lentaginis* (Rehm) Ellis & Everh., N. Amer. Pyren. (Newfield): 530 (1892)
Typification details – Holotype, NY, Holway 119
Host – *Viburnum lentago* (Adoxaceae)
Distribution – North America (USA)

Notes – This species was initially identified as Cryptosporella lentaginis by Rehm in Ellis (1883), a species found from the dead wood of Viburnum lentago in Iowa, USA. Later, it was synonymized under Diaporthe based on morphological data (Reid & Booth 1989). The species is characterized by globose perithecia, membranaceous, mostly 3–4 together in a cortical stroma, with short ostiola, barely piercing the epidermis, which is raised into numerous little tuberculiform pustules, clavate to cylindrical asci, 45 × 7–8 µm, biseriate, cylindrical, hyaline, straight or slightly curved ascospores, 11–12 × 2–2.5 µm, with 2- or 3-minute nuclei (Reid & Booth 1989). The asexual morph is undetermined. Sequence data is not available for this species.

≡ Phomopsis leptostromiformis (J.G. Kühn) Bubák, Danish fungi (Copenhagen): 422 (1913)
Typification details – Holotype, IMI 166508
Host – Lupinus angustifolius (Fabaceae)
Distribution – Oceania (Western Australia), North America (Southern USA)
Notes – Diaporthe leptostromiformis was reported from the stems of Lupinus consentini in Western Australia. We were unable to find the original description of the species. Unpublished sequences are available in NCBI as Phomopsis leptostromiformis.

Diaporthe leucheriicola Speg. [as ‘leucheriicola’], Boln Acad. nac. Cienc. Córdoba 25: 63 (1921)
Typification details – Holotype, Spegazzini, 1917
Host – Leucheria sp. (Asteraceae)
Distribution – South America (Chile)
Notes – Diaporthe leucheriicola was found from the stems of Leucheria sp. in Chile. This species is characterized by stromata, with small, subglobose, membranaceous, almost immersed perithecia, ostiole scarcely protrude on the surface of the stroma, 8-spored, fusoid asci, 50–60 × 8–10 µm, aparaphysate, elliptical to biconical, rounded at both sides, 1-septate at the middle, light constricted, 1-guttules, hyaline ascospores, 10–12 × 3–4 µm (Spegazzini 1921). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe leucopis (Fr.) Sacc., Syll. fung. (Abellini) 2: XLVIII (1883)
≡ Cryptospora leucopis (Fr.) Ellis & Everh., N. Amer. Pyren. (Newfield): 529 (1892)
≡ Valsa leucopis (Fr.) Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 506 (1875)
≡ Sphaeria leucopis Fr., Mykologische Hefte (Leipzig) 2: 48 (1823)
Typification details – N/A
Hosts – Ulmus sp. (Ulmaceae), Corylus sp. (Betulaceae)
Distribution – Europe (Germany, France)
Notes – This species was found on branches of Corylus sp. and introduced as Sphaeria leucopis by Fries (1823). Saccardo (1883) synonymized it under Diaporthe leucopis. The species is characterized by perithecia, white inside, ostiolate, lanceolate, 4-guttules spores (Saccardo 1883). Sequence data is not available for this species.

Diaporthe leucospermi Crous & Summerell, Persoonia 27: 32 (2011)
Typification details – Holotype, CBS H-20674; ex-type, CPC 2956 = CBS 111980
Diaporthe ligulata Nitschke, Pyrenomyc. Germ. 2: 291 (1870)
- Typification details – N/A
- Host – *Ulex europaeus* (Fabaceae)
- Distribution – Europe (Germany)

Diaporthe leycesteriae Grove, J. Bot., Lond. 68: 274 (1930)
- *Phomopsis leycesteriae* Grove, J. Bot., Lond. 68: 274 (1930)
- Typification details – N/A
- Host – *Leycesteria formosa* (Caprifoliaceae)
- Distribution – Europe (Great Britain)
- Notes – The species was found from stems of *Leycesteria formosa* in Great Britain. It is characterized by densely scattered pycnidia that are surrounded by conspicuous cinereous (Grove 1930). The peridium is thick and fuscous-black above, but below brownish, sub-translucent. The alpha spores are ovate to fusoid, acute at one end, 2-guttulat, 5–7 × 2–2–5 µm. The beta spores are filiform to linear, usually somewhat curved or flexuous, mostly distinctly hamate, 20–28 µm. Sequence data is not available for this species.

Diaporthe leucostroma Nitschke, Fungi rhenani exsic., fasc. 20: no. 1989 (1864)
- Typification details – N/A
- Host – *Sambucus* sp. (Adoxaceae)
- Distribution – Europe (Germany, Italy, France)
- Notes – *Diaporthe leucostroma* was found from dry branches of *Sambucus* sp. in Germany, Italy and France. The species is characterized by stromata, surrounded by black line, immersed, gregarious, globose perithecia, conical ostiole, 8-spored, fusoid, 2-foveolate asci, with light at apex, 50–60 × 8 µm, aparaphysate, distichous, cylindrical to fusoid, obtuse at both ends, 1-septate, constricted at the septum, hyaline ascospores, with 4-guttules, 11–15 × 3–4 µm (Saccardo 1882a). Sequence data is not available for this species.

- Typification details – N/A
- Host – On a rotten branch
- Distribution – Aisa (Indonesia)
- Notes – *Diaporthe magellanica* was found on a rotten branch in Indonesia. This species is characterized by scattered, black stromata, penetrating the wood, with large, irregularly rounded, 3–5 perithecia in a stroma, non-protruding neck, 8-spored, clavate or spindle-shaped asci, 45–50 × 6–7 µm, aparaphysate, with biseriate, fusiform, blunt at both ends, 4-celled ascospores, with 4-guttules, 9–10 × 2–3 µm (Höhnel 1909). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – N/A
- Host – On a rotten branch
- Distribution – Europe (Germany, Italy, France)
- Notes – The species was found from dry branches of *Sambucus* sp. in Germany, Italy and France. The species is characterized by stromata, surrounded by black line, immersed, gregarious, globose perithecia, conical ostiole, 8-spored, fusoid, 2-foveolate asci, with light at apex, 50–60 × 8 µm, aparaphysate, distichous, cylindrical to fusoid, obtuse at both ends, 1-septate, constricted at the septum, hyaline ascospores, with 4-guttules, 11–15 × 3–4 µm (Saccardo 1882a). Sequence data is not available for this species.

Diaporthe ligulata Nitschke, Pyrenomyc. Germ. 2: 291 (1870)
- Typification details – N/A
- Host – *Ulex europaeus* (Fabaceae)
- Distribution – Europe (Germany)

Diaporthe ligulata Nitschke, Fungi rhenani exsic., fasc. 20: no. 1989 (1864)
- Typification details – N/A
- Host – *Sambucus* sp. (Adoxaceae)
- Distribution – Europe (Germany, Italy, France)
- Notes – *Diaporthe ligulata* was found on leaves of *Leucospermum* sp. in New South Wales, Australia. This species is characterized by pycnidal conidiomata, dark brown, exuding a creamy white conidial cirrus. Alpha conidia are hyaline, smooth, aseptate, with 2-guttules, ellipsoid, tapering to an acutely rounded apex and obtuse to truncate base, hilum with a flattened scar. Beta conidia are hyaline, smooth, aseptate, spindle-shaped, prominently hooked in the apical part, apex acute and base truncate. A detailed description of its asexual morph is available in Crous et al. (2011c). The sexual morph is undetermined.

In the combined phylogeny of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.
Notes – *Diaporthella ligulata* was introduced by Nitschke (1870), and found from the branches of *Ulex europaeus*. It is characterized by stromata, black globose perithecia, loosely scattered, protruding ostiole, clavate to fusiform asci, 60 × 9–10 µm, and fusiform to subcylindrical obtuse on both sides, 2-celled, slightly constricted, 2–4-guttules, hyaline ascospores, 12–13 × 4 µm (Nitschke 1870, Saccardo 1882a). Sequence data is not available for this species.

Diaporthella ligustri Allesch., Sudbayers beob. Pilze: 194 (1886)
Typification details – N/A
Host – *Ligustrum vulgare* (Oleaceae)
Distribution – Europe (Denmark)
Notes – *Diaporthella ligustri* was isolated from dry *Ligustrum vulgare* in Denmark. This species is characterized by stromata with a black circumscribing line, with immersed, scattered, black globose to ellipsoid perithecia, elongated and straight or curved ostiole, clavate asci, 45–50 µm, and fusoid, 1-septate, constricted, 4-guttules, hyaline ascospores, 12–14 × 3 µm (Saccardo 1891). Petrak (1916) mentioned that *D. ligustri* has stroma bordered by black marginal lines which is different from *D. ligustri-vulgaris*. Sequence data is not available for this species.

Typification details – Holotype, NY, Ellis & Everhart, Apr. 1896
Host – *Andromeda ligustrina* (Ericaceae)
Distribution – North America (USA)
Notes – *Diaporthella ligustrina* was found from the bark of *Andromeda ligustrina* in New Jersey, USA. This species is characterized by thickly scattered perithecia, buried in the unaltered substance of the bark, subconical ostiole, tuberculiform or subglobose, often seriate in longitudinal cracks in the bark, distinctly erumpent and appear like superficial perithecia. Asci are clavate to oblong 50–60 × 8–10 µm, with subbiseriate, fusoid ascospores at first but when mature obtusely rounded at the ends and constricted in the middle, 10 × 4 or 9–11 × 3.5–4.5 µm (Ellis & Everhart 1897a). The asexual morph is undetermined. Sequence data is not available for this species.

= *Diaporthella ligustrina* Petr., Anns mycol. 13: 49 (1915)
Typification details – N/A
Host – *Ligustrum vulgare* (Oleaceae)
Distribution – Europe (Germany)
Notes – Petrak (1915) established *Diaporthella ligustrina*, however, the species name was used to accommodate another taxon in Ellis & Everhart (1897a). Petrak (1916) noted that *D. ligustri-vulgaris* is morphologically similar to *D. ligustrina* Ellis & Everh. but they are different species. Therefore, *D. ligustri-vulgaris* was established to accommodate *D. ligustrina* Pertak. The *Diaporthella ligustri-vulgaris* was reported from *Ligustrum vulgare*. According to the description of *D. ligustrina* by Petrak (1915) (current name *D. ligustri-vulgaris*), this species has scattered, gregarious, black, membranaceous to coriaceous perithecia, nesting in the bark, pustules, with erumpent ostiole, fusoid asci, sessile, slightly attenuated on both sides, 42–55 × 6–10 µm, aiparaphysate, with fusoid, 1–3-septate, gently constricted at the middle septum, obtuse on both sides, 2–4-guttules, hyaline ascospores, 9–13 × 4 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthella limoniae Mahadevak., Y. Chen, Maharachch., L.S.M. Bhanu & Chandran. 2022
Typification details – Holotype, UOM IOE-12/22; ex-type, DIA-12
Host – *Limonia acidissima* (Rutaceae)
Distribution – Asia (India)
Notes – *Diaporthella limoniae* was reported by Tan et al. (2022) on the infected fruit of *Limonia acidissima* in Karnataka, India. It was introduced based on phylogeny, along with morphological
characters of the asexual morph (Tan et al. 2022). The morphology of the asexual morph was described with pycnidial conidiomata, cylindrical, hyaline conidiophores, cylindrical phialidic, hyaline conidiogenous cells, produced cylindrical to ellipsoidal, aseptate, hyaline, 2-guttule, with conspicuous guttule at each end, straight to slightly curved alpha conidia, and filiform, hamate, eguttulate, aseptate, hyaline beta conidia (Tan et al. 2022). The sexual morph is undetermined.

Diaporthe limonicola Guarnaccia & Crous, IMA Fungus 8(2): 328 (2017)
Typification details – Holotype, CBS H-23126; ex-type, CBS 142549 = CPC 28200
Hosts – *Citrus limon* (Rutaceae), *Citrus grandis* cv. Tomentosa (Rutaceae), *Erythrina cristagalli* (Fabaceae)

Distribution – Asia (China), Europe (Malta)

Notes – This species was introduced as a species associated with serious trunk and branch cankers of *Citrus limon* (Guarnaccia & Crous 2017), and later it has been reported as a pathogen causing leaf spot disease on *Areca catechu* in China (Xu et al. 2020), and on *Erythrina cristagalli* in China (Li et al. 2021). It was also found as an endophyte on *Citrus grandis* cv. Tomentosa in China (Dong et al. 2020). The species can be differentiated from its phylogenetically sister taxon *D. pseudomangiferae* in having shorter alpha conidia and in producing beta and gamma conidia (Guarnaccia & Crous 2017). A detailed description of its asexual morph was given by Guarnaccia & Crous (2017). Pathogenicity data are available in Guarnaccia & Crous (2017) and Xu et al. (2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe arecae* species complex.

Typification details – Holotype, SCHM, Cheng 3621
Host – *Artocarpus heterophyllus* (Moraceae), *Liquidambar formosana* (Altingiaceae), *Psidium* sp. (Myrtaceae), *Tamarindus indica* (Fabaceae)

Distribution – Asia (China, Thailand)

Notes – *Diaporthe liquidambaris* was found in the living branches of *Liquidambar formosana* in Fujian, China. The species is characterized by immersed, aggregated conidiomata, hyaline alpha conidia and beta conidia (Chang et al. 2005a). Detailed descriptions and illustrations of the asexual morph are available in Chang et al. (2005a). The sexual morph is undetermined.

In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), the type sequence of this species (SCHM 3621) is related to some other strains from *D. arecae* species complex. However, we do not accept *D. liquidambaris* as a member of *D. arecae* species complex until more gene regions are available.

Diaporthe lirelliformis Pat. Bull. Soc. mycol. Fr. 13: 212 (1897)

Typification details – N/A
Host – *Erophaca baetica* (Syn. *Phaca baetica*) (Fabaceae)

Distribution – Africa (Algeria)

Notes – *Diaporthe lirelliformis* was found from *Erophaca baetica* in Algeria. This species is characterized by small, subcutaneously perithecia, globose or elliptical, with oval to elongated, barely protruding ostioles, aseptate, hyaline, 2-guttules, with conspicuous guttule in the middle, hyaline, 4-guttules spores (Patouillard 1897a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HSAUP 194.22; ex-type, SAUCC194.22
Host – Elaeagnus conferta (Elaeagnaceae), Litchi chinensis (Sapindaceae)
Distribution – Asia (China)

Notes – Diaporthe litchii was established by Sun et al. (2021). It was found on infected leaves of Litchi chinensis in Yunnan, China. Phylogenetic analysis revealed that D. litchii is sister to D. collariana. However, D. litchii differs from D. collariana in terms of conidiophores and alpha conidia size, as well as nucleotide differences in the ITS, tub2, tefl-a, and cal (Sun et al. 2021). Diaporthe litchii produced globose conidiomata, black, clustered in groups of 3–5 pycnidia, coated with white hyphae, conidial masses produced as creamy to yellowish droplets extruding through the ostioles, with cylindrical, branched, hyaline conidiophores, paraphyses not seen, cylindrical conidiogenous cells, ellipsoid to fusiform, aseptate, 2-guttules, hyaline alpha conidia, and filiform, aseptate, hyaline beta conidia (Sun et al. 2021). The sexual morph is undetermined.

Typification details – Holotype, BRIP 54900
Host – Litchi chinensis (Sapindaceae)
Distribution – Oceania (Australia)

Notes – Diaporthe litchicola was found from the dieback of lychee (Litchi chinensis) in northern Queensland, Australia (Tan et al. 2013). Pycnidia of this species formed abundantly on OMA, PDA and wheat stems on WA after 4 weeks. It also produced alpha and beta conidia. Detailed descriptions and illustrations of asexual morph are available in Tan et al. (2013).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe litchicola clustered in the D. arecae species complex.

Typification details – Holotype, HMAS 244234
Host – Lithocarpus glabra (Fagaceae)
Distribution – Asia (China)

Notes – Phomopsis lithocarpi was validly synonymized with Diaporthe by Tan & Shivas (2023). The species was found on leaves of Lithocarpus glabra in Zhejiang, China. Gao et al. (2016) used 42 isolates of D. hongkongensis in their phylogenetic analyses and found that the type strain of D. lithocarpi clustered within these isolates. As a result, they synonymized D. lithocarpi under D. hongkongensis. However, adding novel species such as D. araliae-chinensis, D. salinicola and D. tuyouyou in phylogenetic analyses revealed that D. lithocarpi is a distinct species separate from D. hongkongensis (Dayarathne et al. 2020, Hyde et al. 2023, Tan & Shivas 2023). We therefore retain D. hongkongensis D. salinicola, D. lithocarpi, and D. tuyouyou as distinct species. However, it is crucial not to overlook the 42 isolated strains identified as D. hongkongensis, as they may represent multiple novel species. We strongly request more tests such as GCPSR, GMYC, PTP analyses, and phylogenetic network to clarify the taxonomic relationships among these species before synonymizing them.

≡ Chorostate lithraeae (Speg.) Sacc. & Trotter, Sylloge Fungorum 22: 377 (1913)
Typification details – N/A
Host – Lithraea caustica (Anacardiaceae)
Distribution – South America (Chile)
Notes – *Diaporthella caustica* was found from dead branches of *Lithraea caustica* in Chile. This species is characterized by gregarious perithecia, globose, black, submembranous, with cylindrical and carbonaceous ostioles, 8-spored, fusoid asci, 70–75 × 10–12 µm, aparaphysate, and almost cylindrical, obtuse at both ends, 1-septate, slightly constricted, the lower cell sometimes slightly thinner than the upper cell. 2-guttules at each cell, hyaline ascospores, 17–18 × 4–5 µm (Spegazzini 1910). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, MFLU 17-0874; isotype, BBH 42436; ex-type, MFLUCC 16-1195, MFLUCC 17-1657
Host – Unidentified sea-shore plant
Distribution – Europe (United Kingdom)
Notes – *Diaporthella litoricola* was found on stem of unidentified sea-shore plant in the United Kingdom. This species is characterized by solitary, scattered, immersed, ascomata globose to subglobose, dark brown, coriaceous, ostiolate, with conspicuous, long, black, pale yellow apex, brown, unbranched seta in apex papilla, internally covered by hyaline, filamentous periphyses, and 8-spored, unitunicate, cylindrical, pedicellate, apex rounded, with bilobed, distinct apical ring, biseriate, fusiform to ellipsoid, 1-septate, hyaline, guttules ascospores. The asexual morph of *D. litoricola* was also observed in PDA cultures. It produced globose pycnidial conidiomata, erumpent at maturity, black, coriaceous, with elongated necks, ovate to ellipsoid, aseptate, hyaline, smooth, base subtruncate, often 2-guttules alpha conidia, fusiform to hooked, base subtruncate, aseptate, hyaline, smooth beta conidia (Senanayake et al. 2017).

In the ITS phylogeny of Norphanphoun et al. (2022, Fig. 3), this species is sister to *Diaporthella crotalariae* (CBS 162.33).

Diaporthella tricida (Fr.) Sacc., Syll. fung. (Abellini) 1: 621 (1882)
≡ *Valsa tricida* (Fr.) Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 502 (1875)
≡ *Sphaeria tricida* Fr., Mykologische Hefte (Leipzig) 2: 44 (1823)
Typification details – N/A
Host – *Juglans cinerea* (Juglandaceae)
Distribution – North America (USA)
Notes – *Diaporthella tricida* was first introduced as *Sphaeria tricida* in New York, USA by Fries (1823). This species is characterized by minute and yellowish stromata, with small, globose, black perithecia and lanceolate, 1-septate, constricted at the septum, 4-guttules spores, 12 long µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Isotype, DAOM 116538
Host – *Pseudotsuga menziesii* (Pinaceae)
Distribution – North America (Canada)
Notes – *Diaporthella lokoyae* was found from the bark of *Pseudotsuga menziesii* in British Columbia, Canada. This species was the cause of an outbreak of dieback in Douglas fir in British Colombia (Funk 1968). The sexual morph has been reported in Hahn (1933) and Funk (1968) reported the sexual morph. Sequence data is not available for this species.

Typification details – Holotype, BPI 358745

Typification details – Holotype, ZHKUCC 22-0040; ex-type, ZHKUCC 22-0058

Host – *Morinda officinalis* (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe longiconidialis* was introduced by Luo et al. (2022). The species was found on healthy stem and root of *Morinda officinalis* in Guangdong Province, China. *Diaporthe longiconidialis* is phylogenetically related to *D. biconispora* and *D. pometiae* (Luo et al. 2022). However, the colony surface of *D. biconispora* is white and light yellow, the center of the back is black, and the sides are light yellow (Huang et al. 2015). The colony of *D. pometiae* is white, and the back is white to light grey (Huang et al. 2021a). Whereas the colony of *D. longiconidialis* has white cotton with some polygon mycelium as stars in the center, then with purple pigmentation (Luo et al. 2022). The alpha conidia of *D. longiconidialis* are the same as those of *D. biconispora*, while they are bigger than those of *D. pometiae* (8 × 3 vs. 6.7 × 3.1 μm) (Huang et al. 2021a, Luo et al. 2022).

Typification details – Holotype, US 1108873

Host – *Vitis* cv. Black Queen (Vitaceae)

Distribution – Africa (Kenya), Asia (Taiwan), North America (Jamaica)

Notes – *Diaporthe longiparaphysata* was first named *Phomopsis longiparaphysata*, a species isolated from fruits of *Vitis* cv. Black Queen in Taiwan (Rossman et al. 2016). This species is characterized by immersed, generally widely scattered conidiomata, rarely confluent, ampulliform or flattened, sometimes solitary, simply eutromatic, brown or black, with ostiole and papillate, short or elongated conidiophores, enteroblastic, phialidic conidiogenous cells, elliptic or fusiform to elliptic, aseptate, hyaline alpha conidia, with usually 2-guttules (Rossman et al. 2016). Sequence data is not available for this species.

Diaporthe longispora (Wehm.) R.R. Gomes, Glienke & Crous, Persoonia 31: 24 (2013)

Typification details – Holotype, in author’s herbarium No. 3635; ex-type, CBS 194.36 (culture of *D. strumella* var. *longispora*)

Host – *Ribes* sp. (Grossulariaceae)
Distribution – North America (Canada)

Notes – Diaporthe strumella var. longispora was isolated from Ribes sp. in Canada. The species was synonymized under D. longispora based on its distinct morphology and placement in phylogenetic tree (Gomes et al. 2013). This species is characterized by clavate, sessile asci, with a refractive ring in the apex, 60–80 × 7–9 μm, biserrate, fusoid to ellipsoid, 2-celled, usually slightly curved, tapering at both ends, constricted at the septum, 4-guttules, hyaline ascospores, 15–27 × 3–4 μm. Pycnidial stromata as in D. strumella. Alpha conidia are fusoid or fusoid to cylindrical, 1-celled, hyaline and sometimes tapering toward one end, 9–12 × 2–3 μm. Beta conidia are long filiform, straight or variously curved, 1-celled, hyaline, 15–22 × 1.5–1.5 μm (Wehmeyer 1936).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the D. eres species complex (= D. alnea species complex).

Typification details – Holotype, SCHM, Chang 3615
Host – Loropetalum chinense (Hamamelidaceae)
Distribution – Asia (China)
Notes – Diaporthe loropetali was found on living branches of Loropetalum chinense in China. The species is characterized by scattered, immersed to erumpent, conidiomata of eustroma, unilocular, ampullate or tuberous, wall near the ostiole darker and thicker than that at the base, fusiform or lanceolate, acute at the apex, obtuse at the base, 1–2 × 1–2 μm, with 3–5 small oil drops, 6.2–8.4 × 1.5–1.9 μm, and filiform, straight or somewhat curved, 1-celled, hyaline conidia, 14–31 × 0.6–1.2 μm (adapted from Chang et al. 2005b). Detailed descriptions and illustrations of its asexual morph are available in Chang et al. (2005b).

In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), this species formed sister to D. pseudophoenicicola (CBS 462.69).

Typification details – Holotype, BRIP 60163a
Host – Amaranthus blitum (Amaranthaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe norfolkensis was introduced by Tan & Shivas (2022) based on molecular data. It was found from stem of Amaranthus blitum in Norfolk Island, Australia. In phylogenetic tree based on ITS, tub2, and tef1-α sequences, D. lovelaceae formed a distinct lineage at the basal of the clade contained D. biconispora and D. pometiae (Tan & Shivas 2022).

Diaporthe ludwigiana Petr., Annls mycol. 27(1/2): 119 (1929)
Typification details – Holotype, Ludwig, 10 Oct. 1925
Host – Artemisia vulgaris (Asteraceae)
Distribution – Europe (Germany)
Notes – Diaporthe ludwigiana was found on dead stalks of Artemisia vulgaris in Germany. This species is characterized by scattered stroma, substrate completely unchanged, never producing black border lines inside it. Perithecia are densely scattered, often in large numbers and fused, nesting in the innermost layers of the cortex, the base sunk into the wood, 200–300 μm, with very numerous, 8-spored, clavate or almost spindle-shaped, tapered at both ends, or only below, with a very delicate, ephemerale stalk asci, 40–50 μm long, 7–10 μm wide, and biconical or elongated spindle-shaped, mostly tapered at both ends, 2-guttules in each cell, hyaline ascospores (Petrak & Sydow 1929). Sequence data is not available for this species.

Typification details – Holotype, Harkness 2247
Host – *Lupinus arboreus* (Fabaceae)

Distribution – North America (USA)

Notes – *Diaporthe lupini* was described from branches of *Lupinus arboreus* in California, USA. This species is characterized by gregarious perithecia, neck short, thick, with very delicate and fusoid asci, and fusoid, 1-septate, slightly constricted, cells frequently unequal, 4-guttulate ascospores (Harkness 1884). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, CBS H-20130; ex-type, Ph-C086/2, Di-C001/1, Di-C001/3 = CBS 123213, Di-C001/4, Di-C001/5 = CBS 123212 and Di-C001/10

Host – *Foeniculum vulgare* (Apiaceae)

Distribution – Europe (Portugal)

Notes – This species was isolated from the senescent stems of *Foeniculum vulgare* in Portugal. *Diaporthe lusitanicae* is morphologically bit similar to *D. caryigena* and *D. prunicola* (Santos & Phillips 2009). However, *D. lusitanicae* is characterized by aggregated, globose perithecia, deeply embedded in the substrate, black ectostroma, surrounding the entire entostroma and visible as a dark line, dorsal ectostroma effuse, not dipping at all, or only very slightly into the bark tissues between the perithecial clustered, punctuated by groups of protruding ostioles, above the host surface. Asci are unitunicate, cylindrical, widest at centre, with refractive apical ring. Ascospores are mostly biseriate, ellipsoid, rounded ends, 1-septate, constricted at the septum, basal cell slightly longer and narrower, 2-guttulate in each cell, central ones widest. The asexual morph is *Phomopsis* sp. (Santos & Phillips 2009).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex.

Typification details – Holotype, HSAUP 194.36; ex-type, SAUCC194.36

Host – *Chrysalidocarpus lutescens* (Arecaceae)

Distribution – Asia (China)

Notes – *Diaporthe lutescens* was introduced by Sun et al. (2021) and found on leaves of *Chrysalidocarpus lutescens* in Yunnan, China. The species is reported as pycnidial, subglobose conidiomata, with exuding white creamy conidial droplets from ostioles, with subcylindrical, unbranched, septate, hyaline conidiophores, paraphyses not seen, cylindrical, phialidic conidiogenous cells, and filiform, aseptate, hyaline beta conidia, alpha conidia and gamma conidia not observed (Sun et al. 2021). A detailed description and illustration of asexual morph are available in Sun et al. (2021). The sexual morph is undetermined. Based on multigene phylogeny by Sun et al. (2021), *D. lutescens* is phylogenetically closely related to *D. pterocarpi* and *D. pseudoinconspicua*. However, *D. lutescens* differs from these species in having longer beta conidia as well as nucleotide differences (Sun et al. 2021).

Typification details – Holotype, BRIP 66526

Host – *Macadamia* sp. (Proteaceae)

Distribution – Africa (South Africa)

Notes – *Diaporthe macadamiae* was isolated from the husk rot of *Macadamia* sp. in Mpumalanga, South Africa (Wrona et al. 2020). This species is characterized by globose or irregular, dark brown to black, pycnidial conidiomata on OMA, with densely aggregated conidiophores, and phialidic, cylindrical, straight or flexuous, hyaline conidiogenous cells, produced cylindrical, rounded at both ends, aseptate, conspicuous globose guttules, hyaline alpha conidia, and sparse, curved beta conidia. Detailed descriptions and illustrations of this species were
Typification details – Holotype, HSAUP 194.111; ex-type, SAUCC194.111
Host – Machilus pinnata (Lauraceae), Pometia pinnata (Sapindaceae)
Distribution – Asia (China)
Notes – Diaporthe machili was reported from diseased leaves of Machilus pinnata (Huang et al. 2021a). The species is characterized by subglobose to globose, pycnidial conidiomata, with exuding creamy conidial droplets from ostioles, ampulliform, cylindrical, unbranched, septate, hyaline conidiophores, filiform, aseptate, curved, J-shaped, swelling in middle, hyaline beta conidia (Huang et al. 2021a). Phylogenetic analysis showed that D. machili is closely related to D. caryae and D. sackstonii but can be distinguished based on its morphology and nucleotide differences (Thompson et al. 2015, Huang et al. 2021a). Diaporthe machili only produces beta conidia which could not be observed in D. sackstonii (Thompson et al. 2015, Huang et al. 2021a). Moreover, D. machili has longer beta conidia than D. caryae, which produces both alpha and beta conidia (Yang et al. 2018a, Huang et al. 2021a).

Typification details – Holotype, BRIP 55064a
Host – Rapistrum rugosum (Brassicaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe macintoshii was isolated from dead stems of R. rugosum in Southeast Queensland, Australia. This species is characterized by pycnidial conidiomata, abundant on PDA, OMA and WSA, solitary or aggregated in small groups, scattered, sub-globose, ostiole, necks absent, cream conidial droplets exuded from some ostioles, with abundant, fusiform to oval, narrowed towards apex and base, hyaline alpha conidia, and flexuous to hamate, hyaline beta conidia, abundant amongst the alpha conidia. A detailed description of the asexual morph is available in Thompson et al. (2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe macintoshii clustered in the D. oncostoma species complex.

Typification details – Holotype, LPS, Spegazzini, 1905
Host – Maclura pomifera (Syn. M. aurantiaca) (Moraceae)
Distribution – South America (Argentina)
Notes – Diaporthe maculare was found on rotten branches of Maclura pomifera in Buenos Aires, Argentina. This species is characterized by perithecia with minute papillate-ostiolate, fusoid to subclavate asci, 50–60 × 7–10 μm, a paraphysate, distichous, elliptical, obtuse on both sides, 1-septate, more or less constricted in the middle, 4-guttules, hyaline ascospores, 12–16 × 4–6 μm (Spegazzini 1909). Sequence data is not available for this species.

Typification details – Holotype, DAOM 120184
Host – Senecio sp. (Asteraceae)
Distribution – North America (Mexico)
Notes – Diaporthe macrospora was found on dead stems of Senecio sp. in Mexico. The authors were unable to find the original description of the species. Sequence data is not available for this species.
Diaporthe macrostalagmia Tassi, Atti R. Accad. Fisiocrit. Siena, Sér. 4 8: 549 (1897)

Typification details – N/A
Host – *Escallonia montevidensis* (Escalloniaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe macrostalagmia* was introduced by (Tassi 1896b). It was found from the branches of *Escallonia montevidensis* in Italy. The species is characterized by widely spread stroma, the outermost layer blackening, with minute, globose perithecia, often flattened at the base, irregularly scattered, with short ostioles, cylindrical to subcylindrical asci, 65–60 × 12–14 µm, aparaphysate, 1-foveolate within the apex, with distichous, fusoid, 1-septate, constricted at the septum, 2-large-guttules in each cell ascospores, 16–18 × 4–5 µm (Saccardo & Sydow 1899a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe macrostoma Nitschke, Pyrenomyc. Germ. 2: 284 (1870)

Typification details – Holotype, B 70 0009167
Host – *Fagus sylvatica* (Fagaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe macrostoma* was reported on a dried branch of *Fagus sylvatica* (Nitschke 1870). The species is characterized by having widely diffused, black-bordered stroma, scattered, conical to cylindrical spermagonia, unilocular, black, immersed in the base of inner bark of the parenchyma, fusiform, singly acrogenous spermia, 36 × 1 µm, subsessile stylospore, hamate, very thinly filiform, 32–36 × 1 µm, subglobe, depressed in the bark, with 8-spored, clavate to narrowly oblong asci, and subdistantic fusiform, obtuse on both sides, 1-septate, 4-guttules, constricted in the middle, straight, 20 × 5 µm (Nitschke 1870). *Diaporthe macrostoma* was synonymized under *Diaporthe rudis* (Udayanga et al. 2014b), but it shows as distinct species in Index Fungorum (2023). Sequence data is not available for this species. Therefore, recollection, epitypification and molecular analyses are needed to clarify its placement.

Diaporthe maculans Sacc. & Flageolet, Grevillea 21(no. 99): 66 (1893)

Typification details – Holotype, Flageolet s.n.
Host – *Berberis vulgaris* (Berberidaceae)
Distribution – Europe (France)
Notes – *Diaporthe maculans* was found on dead branches of *Berberis vulgaris* in France. This species is characterized by small, globose, black perithecia, with small ostioles, fusoid asci, with bifoveolate at the apex, 40–48 × 7–8 µm, aparaphysate, terete-fusoid, 1-septate, constricted, 4-guttules, hyaline, ascospores, 15 × 4 µm (Saccardo 1893). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe maculosa Sacc. & Sp., Michelia 1(no. 4): 383 (1878)

Typification details – Holotype, PAD, Saccardo, 1877
Host – *Rumex obtusifolius* (Polygonaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe maculosa* was found from dead stems of *Rumex obtusifolius* in Italy. *Diaporthe maculosa* is characterized by stroma, with black, globose-depressed conical perithecia, surrounded by a black stromal line, with 8-spored, fusoid asci, 40–45 × 10–12 µm, obtuse apex, 2-foveolate, aparaphysate, oblong to fusoid, spuriously 1-septate, not constricted, straight, 4-guttules, hyaline ascospores, 10–11 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe magellanica Speg., Boln Acad. nac. Cienc. Córdoba 11(1): 44 (1887)

Typification details – Holotype, LPS, Spegazzini, Jun. 1882
Host – *Ribes magellanicum* (Grossulariaceae)
Distribution – South America (Chile)
Notes – *Diaporthe magellanica* was found from dead branches of *Ribes magellanicum* in Magallanes, Chile. The species is characterized by stromata, obsolete, with loosely gregarious sparse perithecia, lenticular to globose, with very short ostioles, subconoid, perforating upper layer, 8-spored, fusoid ascii, 55–60 × 5–6 µm, aparaphysate, and elliptical to elongate, 1-septate, constricted, obtuse on both sides, 1-guttules, hyaline ascospores, 10–14 × 2.5–3 µm (Spegazzini 1887). The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – N/A
 Host – *Pentaphylloides fruticosa* (Rosaceae)
 Distribution – Russia
 Notes – *Diaporthe magnifica* was found from dead branches of *Pentaphylloides fruticosa* in Russia. The authors were unable to find the original description of the species. Sequence data is not available for this species.

 Typification details – Holotype, SCHM 3001
 Host – *Magnolia coco* (Magnoliaceae)
 Distribution – Asia (China)
 Notes – *Diaporthe magnoliicola* was introduced as a new combination for *Phomopsis magnoliicola* (Gao et al. 2017) which was found in the living leaves of *Magnolia coco* in Guangdong, China. This species is characterized by having immersed or erumpent conidiomata and hyaline alpha conidia (Gao et al. 2017).
 In the ITS phylogeny tree of Norphanphoun et al. (2022, Fig. 3), *Diaporthe magnoliicola* is sister to *D. eres* (AR4371).

Diaporthe mahoniae Speg., Michelia 1(no. 5): 457 (1879)
 = *Diaporthe mahoniae* f. *foliicola* Grove, J. Bot., Lond. 71: 256 (1933)
 Typification details – Holotype, PAD, Spegazzini, 7 Mar. 1879
 Host – *Mahonia aquifolium* (Berberidaceae)
 Distribution – Europe (Italy)
 Notes – *Diaporthe mahoniae* was found from dead branches of *Mahonia aquifolium* in Italy. This species is characterized by stroma formed around the wood in tortuous, globose perithecia,
completely or semi-immersed, with short, cylindrical to conoid, obtuse, protruding ostioles, oblong to fusoid asci, 65–75 × 10 µm, apaphragmate, elliptical to elongate, 1-septate, constricted in the middle, rounded on both sides, 2–6-guttules, hyaline ascospores, 12–14 × 4–4.5 µm (Spegazzini 1879). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A

Host – *Pyrus malus* (Rosaceae)

Distribution – Europe (Austria)

Notes – *Diaporthe mali* was found from the branches of *Pyrus malus* in Austria. The species was characterized by stromata flattened to the inner bark, verruciform, basal flattened, conoidal and pale at apex, with 3–10 large perithecia in a stroma, ovate or deformed by mutual pressure, with cylindrical ostiole, apex attenuated, fusoid asci, 65–72 × 10–14 µm, and often sub-curved, 1-septate, sub-constricted at the septum, guttules ascospores, 18–25 × 4–6 µm (Strasser 1902).

Sequence data is not available for this species.

Typification details – Holotype, LISE 96314; ex-type, CBS142383 = CAA734

Hosts – *Eucalyptus globulus* (Myrtaceae), *Malus domestica* (Rosaceae), *Vaccinium corymbosum* (Ericaceae)

Distribution – Europe (Portugal)

Notes – *Diaporthe malorum* was found from fruits with rot symptoms of *Malus domestica* in Portugal. The asexual morph characters were described and illustrated by Santos et al. (2017). Although the conidial sizes of both *D. malorum* and *D. passiflorae* are similar, they are different in several nucleotide positions in their sequences (Santos et al. 2017). Pathogenicity data are available in Santos et al. (2017) and Lopes et al. (2021). Santos et al. (2017) assessed the pathogenicity of four *Diaporthe* isolates (*D. eres*, *D. foeniculina*, *D. malorum*, and *D. pyracanthae*) on detached twigs of *Pyrus communis* and fruits of *Malus domestica*. *Diaporthe malorum* was observed as the most aggressive species, causing apple fruit rot symptoms (Santos et al. 2017).

Hilário et al. (2021b) performed pathogenicity tests on blueberry cultivars 'Duke', 'Legacy', and 'Spartan'. Additionally, Lopes et al. (2021) conducted pathogenicity tests on *Eucalyptus globulus*.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex, and is sister to *D. passiflorae* (DJY16A1-5) with high statistical support (100% ML).

Diaporthe mamiania Sacc., Syll. fung. (Abellini) 1: 609 (1882)

Xylariaceae, Valscaceae, Ceratostomataceae (Florence) 1(2): 201 (1906)

= *Diaporthe mamiania* var. *vallsiformis* Rehm, Annls mycol. 11(2): 152 (1913)

Typification details – N/A

Host – *Alnus glutinosae, Alnus* sp. (Betulaceae)

Distribution – Europe (Czech Republic, Italy)

Notes – *Diaporthe mamiania* was found from branches of *Alnus* sp. in Italy. The species is characterized by stromata flattened from the base, subhemispherical to pulvinate, white inside, with depressed globose, or conoid-hemispherical, brownish perithecia, ostiole pierced through the bark, spiniform, straight, black, variously curved, with clavate asci, and oblong flattened, 2–4-celled, gently curved, obtuse on both sides, 4-guttules, hyaline ascospores, 20 long µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe manihotis Punith., Kavaka 3: 29 (1976)

= *Phoma manihot* (Speg.) M.S. Gonzáles & N. Pons, Ernstia 37: 30 (1986)

= *Phomopsis manihot* (Speg.) Chevaug., Encyclop. Mycol. 28: 65 (1956)
= *Phyllosticta manihot* Speg., Anal. Mus. nac. B. Aires, Ser. 3 13: 335 (1910)
Typification details – Holotype, IMI 180613
Hosts – *Manihot utilissima*, *M. esculenta* (Euphorbiaceae)
Distribution – Africa (Ethiopia, Nigeria, Rwanda), Asia (China), Central America and West Indies (S.E. Dominica, South America (Colombia)

Notes – The holotype of *Diaporthe manihotis* (‘manihotis’) was found from the stems of *Manihot esculenta* in Colombia. It is reported that *D. manihotis* causes leaf spot disease on Cassava in Ethiopia, India, Nigeria, S.E. Dominica, and Colombia (Sarbhoy et al. 1971, Mathur 1979, Farr & Rossman 2022), it was referred to as Phomopsis blight of tapioca. Severe infection leads to defoliation and stems lesions with numerous pycnidia embedded in the tissue. This disease is distributed worldwide (Punithalingam 1975b). Further, this species was recorded as a saprobe on a dead aerial branch of *Camellia* sp. in China (Abeywickrama et al. 2020). Sexual and asexual morphs have been reported in Abeywickrama et al. (2020) and Swarup et al. (1966), respectively.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe manihotis* (‘manihotis’) clustered in the *D. sojae* species complex.

Diaporthe marchica Rehm, Mycotheca marchica, cent. 6: no. 553 (1883)
Typification details – N/A
Host – *Symphoricarpus racemosa* (Caprifoliaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe marchica* was described from branches of *Symphoricarpus racemosa* in Berlin, Germany. This species is characterized by gregarious, erumpent, black stromata, breaking out through the periderm, with gregarious, globose, brownish perithecia, conical short ostioles, 8-spored, elliptical ascus, 40 × 6–7 µm, elliptical, 4-celled, not constricted in the middle, 1-large-guttules at each cell ascospores, 12–14 × 3 µm. The asexual morph is undetermined (Saccardo & Sydow 1899a). Sequence data is not available for this species.

Typification details – Holotype, MFLU 17-2622; isotype, HKAS102054
Host – *Rhizophora* sp. (Rhizophoraceae)
Distribution – Asia (Thailand)
Notes – The species was introduced as saprobie on decaying submerged *Rhizophora* sp. (Rhizophoraceae) wood. *Diaporthe marina* was introduced with sexual morph characters of long necked ascomata which lack stromatic tissue, cylindrical asci and ovoid, 1-septate ascospores with a small upper cell and an enlarged lower cell (Dayarathne et al. 2020). The asexual morph is undetermined. *Diaporthe marina* is phylogenetically closely related to *D. aquatica* and *D. salinicola* (Dayarathne et al. 2020). However, *D. marina* morphologically differs from these two species by having a peridium of *textura intricata* and ascospores with a small upper cell and an enlarged lower cell with a prominent septum (Dayarathne et al. 2020).

Only ITS sequence data of *Diaporthe marina* is available from its holotype material (MFLU 17-2622). Based on the single gene tree of ITS sequence in Norphanphoun et al. (2022, Fig. 3), this species is sister to *D. brasiliensis* and *D. caatingaensis*, which are members of *D. sojae* species, complex with low bootstrap support.

Typification details – Holotype, BRIP 57892a
Distribution – Asia (China, India), Oceania (Australia), South America (Brazil)
Notes – *Diaporthe masirevicii* was isolated from the stem of *Helianthus annuus* in Australia. Additionally, this species was recovered from leaves of *Zea mays*, *Glycine max* and the stems of *Chrysanthemoides monilifera* subsp. *rotundata*. Further, this species was isolated as an endophyte on *Citrus grandis* cv. Tomentosa from China. *Diaporthe masirevicii* produced scattered pycnidia on PDA, OMA and WSA after 4 weeks, compared to phylogenetically its closely related species; *D. endophytica*, which was sterile (Thompson et al. 2015).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex.

Typification details – N/A
Host – *Cistus monspeliensis* (Cistaceae)
Distribution – Europe (Greece)
Notes – *Diaporthe mattfeldii* was introduced from dead branches of *Cistus monspeliensis* in Greece. The authors were unable to find the original description of the species. Sequence data is not available for this species.

Typification details – Holotype, CBS H-21096; ex-type culture CBS 133185 = LGMF 938 = CPC 20314
Host – *Maytenus ilicifolia* (Celastraceae)
Distribution – South America (Brazil)
Notes – This species was introduced from petioles and grows endophytically in *Maytenus ilicifolia* in Brazil (Gomes et al. 2013). It is characterized by pycnidial conidiomata, globose, immersed, scattered and aggregated, brown to black, ostiolate, short necks, produced oblong to ellipsoid, apex bluntly rounded, base obtuse, hyaline, 2-guttules alpha conidia, beta and gamma conidia are absent. The sexual morph is undetermined. A detailed description of the asexual morph is available in Gomes et al. (2013).

In the combined gene analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.

Diaporthe maytenicola Crous, Persoonia 31: 259 (2013)

Typification details – Holotype, CBS H-21452; ex-type, CPC 21897, 21896 = CBS 136441
Host – *Maytenus acuminata* var. *acuminata* (Celastraceae)
Distribution – Africa (South Africa)
Notes – *Diaporthe maytenicola* was introduced from the leaves of *Maytenus acuminata* var. *acuminata* in South Africa. Alpha conidia of *D. maytenicola* are larger than those of *D. mayteni* which was also recently described from *Maytenus ilicifolia* collected in Brazil (Crous et al. 2013). The sexual morph is undetermined.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. oncostoma* species complex.

Diaporthe mazzantioides Sacc. & Speg., Michelia 1(no. 4): 385 (1878)

Typification details – Holotype, PAD, Saccardo, 1877
Host – *Galium sylvaticum* (Rubiaceae)
Distribution – Europe (Italy)
Notes – This species was observed as small blackish tapestry of bark stems of *Galium sylvaticum* in Italy. It is characterized by a few perithecia in each patch, subcutaneous tissues, globose, with papillate, fusoid to clavate, acute at the base asci, 50–60 × 7–8 μm, a paraphysate, and fusoid, spuriously 1-septate, slightly constricted, obtuse on both sides, often curved, 4-guttules, hyaline ascospores, 10–12 × 3–3.5 μm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 60072a
Host – Mangifera laurina (Anacardiaceae)
Distribution – Oceania (Australia)
Notes – Diaporthella mclennaniae was introduced by Tan & Shivas (2022) based on molecular data. It was found from fruit of Mangifera laurina in Queensland, Australia. In phylogenetic tree based on ITS, tub2, and tefl-1 sequences, D. moriniae formed a distinct lineage at the basal of the clade contained D. lenispora and D. xunwuensis (Tan & Shivas 2022).

Diaporthella medusina (Fr.) Sacc., Syll. fung. (Abellini) 1: 687 (1882)
≡ Sphaeria medusina Fr., Elench. Fung. (Greifswald) 2: 75 (1828)
Typification details – N/A
Host – Platanus occidentalis (Platanaceae)
Distribution – Europe (France)
Notes – Diaporthella medusina was found in the cortex of Platanus occidentalis in France. This species is characterized by very widely diffused, sooty-black stromata, scattered, deeply immersed, very sparingly, minute, globose, black perithecia, with erumpent, very thin, brown, hairy ostiole (Saccardo 1882a). Sequence data is not available for this species.

Typification details – Holotype, ZHKUCC 22-0067; ex-type, ZHKUCC 22-0067; ex-paratype, ZHKUCC 22-0068
Host – Morinda officinalis (Rutaceae)
Distribution – Asia (China)
Notes – Diaporthella megabiguttulata was introduced by Luo et al. (2022) based on morphological characteristics, molecular data and the PHI analysis. This species was found on a healthy stem of Morinda officinalis in Guangdong Province, China. Phylogenetically, the species clustered with D. unshiuensis and D. longicolla (Luo et al. 2022). However, the alpha conidia of D. unshiuensis are wider than those of D. megabiguttulata, whereas the alpha conidia of D. megabiguttulata are shorter than those of D. longicolla. Furthermore, D. megabiguttulata produces beta conidia, while D. unshiuensis and D. longicolla do not produce beta conidia. A detailed description of D. megabiguttulata was provided in Luo et al. (2022).

Typification details – Holotype, NY, Surgis, Jul. 1889
Host – Sambucus canadensis (Adoxaceae)
Distribution – North America (USA)
Notes – This species was introduced from the dead wood of Sambucus canadensis from Massachusetts, USA. It is characterized by globose, scattered perithecia, buried in the wood which is blackened on the surface but remains white within, abruptly contracted above and prolonged into a long rough, subflexuous ostiolum, 70–90 × 10–12 μm asc, biseriate, oblong to fusoid, slightly curved, 1-septate, constricted at the septum, acute at the ends, 1–2 large nuclei in each cell ascospores, 25–35 × 4.5–5.5 μm (Ellis & Everhart 1890).

In combined gene analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the D. sojae species complex.

Diaporthella melanocarpa Dearn., Mycologia 18(5): 247 (1926)

Typification details – Holotype, Dearness 3488; House s.n.; (DAOM 120544; Label on type specimen package)
Host – Pyrus melanocarpa (Rosaceae)
Diaporthe melastomatis
 Typification details – Holotype, HSAUP 194.55; ex-type, SAUCC194.55
 Host – Camellia sinensis (Theaceae), Melastoma malabathricum (Melastomataceae), Millettia reticulata (Fabaceae)
 Distribution – Asia (China)
 Notes – Diaporthe melastomatis was reported on diseased leaves of Melastoma malabathricum in China (Sun et al. 2021). The species produced subglobose to globose, black, pycnidial conidiomata, coated with white hyphae, with yellowish spiral conidiophores extruding from ostioles, cylindric-clavate, branch, septate, cylindrical conidiogenous cells, oblong ellipsoidal, aseptate, hyaline ascospores, 2–4 guttulate, and filiform, aseptate, sigmoid to lunate, multi-guttulate, hyaline beta conidia (Sun et al. 2021). Detailed descriptions and illustrations of asexual morph are available in Sun et al (2021). The sexual morph is undetermined. In phylogenetic analysis, D. melastomatis formed a sister clade to D. parapterocarpi. However, they are different in morphological characters and nucleotide differences (Sun et al. 2021).

Diaporthe meliae
C.M. Tian & Qin Yang, in Cao, Luo, Lin, Yang & Deng, MycoKeys 91: 38 (2022)
 Typification details – Holotype, BJFC-S1668; ex-type, CFCC 53089
 Host – Melia azedarach (Meliaceae)
 Distribution – Asia (China)
 Notes – Diaporthe meliae was introduced by Cao et al. (2022). The species was found on branches of Melia azedarach, in Shandong Province, China. The species produced pycnidial conidiomata which erumpent through the bark surface, single locule, one ostiole per ectostromatic disc, conidiophores reduced to conidiogenous cells, cylindrical, branched, straight or slightly curved, hyaline conidiogenous cells, with fusiform, aseptate, multi-guttulate, hyaline alpha conidia, beta conidia not observed. The detailed descriptions and illustrations of asexual morph for this species were given in Cao et al. (2022). The sexual morph is undetermined. In the phylogenetic tree of Cao et al. (2022), the two strains of D. meliae formed as a well-supported clade.

Diaporthe meliloti
(Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 223 (1906)
≡ Diaporthe fasciculata var. meliloti Sacc., Fungi italic. autogr. del. 29–32: tab. 1253 (1882)
 Typification details – N/A
 Host – Melilotus officinalis (Fabaceae)
 Distribution – Europe (Italy)
 Notes – Diaporthe meliloti was isolated from dead stems of Melilotus officinalis in Italy. This species is characterized by immersed perithecia, covered by blackened periderm, with cylindrical ostiole, 8-spored, fusoid asci, 50–54 × 8–10 μm, and fusoid, obtuse at both sides, straight, 1-septate at the middle, constricted, 4-guttules, hyaline ascospores, 12–15 × 3.5–4 μm (Saccardo & Trotter 1913). Sequence data is not available for this species.
Diaporthe melitensis Guarnaccia & Crous, IMA Fungus 8(2): 329 (2017)

Typification details – Holotype, CBS H-23127; ex-type, CBS 230.52
Host – *Citrus limon* (Rutaceae)
Distribution – Europe (Malta)

Notes – *Diaporthe melitensis* was isolated from diseased canker trunk samples of *Citrus limon* in Gozo, Malta. *Diaporthe melitensis* can be distinguished from closely related *D. pseudomangiferae* by having shorter alpha conidia (Guarnaccia & Crous 2017). The asexual morph characters were described and illustrated in Guarnaccia & Crous (2017). The sexual morph is undetermined. The species causes symptoms in lemon (Cankers with gummosis) and mandarin plants (internal discoloration of twigs). Pathogenicity data is available in Guarnaccia & Crous (2017) which revealed that *D. melitensis* caused serious symptoms with no difference among the hosts (*Citrus limon, C. aurantiifolia, C. reticulata,* and *C. sinensis*).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe arecas* species complex.

Diaporthe melonis Beraha & M.J. O’Brien, Phytopath. Z. 94(3): 205 (1979)

Typification details – Isotype, CBS H-891
Hosts – *Annona squamosa* (Annonaceae), *Berberis aristata* (Berberidaceae), *Carapa guianensis* (Meliaceae), *Cucumis melo* (Cucurbitaceae), *Glottidium sp.* (Fabaceae), *Glycine max, G. soja* (Fabaceae)

Distribution – Asia (Myanmar, India, Indonesia, Japan, Java), North America (USA)

Notes – *Diaporthe melonis* was first found on stems of *Glottidium sp.* in the USA. This species is known as a causative agent in many diseases, including Soybean stem disease in Myanmar (Zaw et al. 2020) and Berry drop of grape in Japan (Kinugawa et al. 2008). Pathogenicity data is available in Zaw et al. (2020). The asexual morph of this species is characterized by irregular numerous pycnidia scattered in agar, and forming solitary, stromatic, unilocular pycnidia with ostiolate, fusiform to ellipsoidal, unicellular, hyaline, 2-guttules alpha conidia, filiform, unicellular, curved at one end, hyaline beta conidia. The sexual morph has perithecia which are often clustered and partially embedded, with carbonaceous, sinuous, filiform, irregular neck, 8-spored, ovate, sessile asci, and narrowly ellipsoidal to bluntly fusoid, bicellular, constricted at the septum, 2-guttules in each cell, hyaline ascospores (Beraha & O’Brien 1979).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *Diaporthe sojae* species complex.

= *Phoma mendax* (Sacc.) Sacc., Michelia 1(no. 5): 521 (1879)

= *Phomopsis mendax* (Sacc.) Traverso, Fl. Ital. Crypt. 2(1): 260 (1906)

Typification details – N/A
Host – *Albizia julibrissin* (Fabaceae)

Distribution – Africa (Tanzania), Asia (India: Kerala), Europe (Italy: Padova)

Notes – The species was first introduced as *Phomopsis mendax* and is characterized by having small globular-like perithecia, fusoid asci, 60 µm and hyaline oblong ascospores, 12–15 µm (Saccardo 1882). The asexual morph is undetermined. There were few records about *P. mendax* causing Phomopsis shoot die-back disease in *Albizia falcata* plantations in Kerala, India. Further, this species was recorded from indigenous tree species *Albizia versicolor* and *A. petersiana* from Tanzania (Nsolomo & Venn 1994). Pathogenicity data are available in Sharma & Sankaran (1987). Sequence data is not available for this species.
Typification details – Holotype, NYS, House, 18 May 1917
Host – Paliurus aculeatus (Rhamnaceae)
Distribution – Europe (Italy)
Notes – Diaporthe menispermoides was recovered from the trunk of Menispermum canadense in New York, USA. Based on the description of its basionym, D. menispermia has scattered stromata, with 2–3 perithecia in a stroma, sunk in the wood and raising the epidermis into minute pustules, with cylindrical ostiole, emerging through a black disk very slightly above the uncolored epidermis, fusoid asci, 45 × 7 µm, ap paraphysate, oblong to elliptical, 1-septate, obtruse at both ends, 2-nucleate, hyaline ascospores, 10–11 × 3.5 µm (Dearness & House 1921). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe meridionalis Sacc., Michelia 1(no. 4): 387 (1878)
Typification details – Holotype, PAD, Saccardo, Oct. 1874
Host – Paliurus aculeatus (Rhamnaceae)
Distribution – Europe (Italy)
Notes – Diaporthe meridionalis was found from branches of Paliurus aculeatus in Italy. This species is characterized by stroma surrounding the branch in various directions, limited by a black line running through the wood, with loosely grouped, globose, embedded perithecia, ostiole protruding through the wood, 8-spored, fusoid asci, 55 × 10 µm, ap paraphysate, oblong to fusoid, 1-septate, gently constricted in the middle, 4-guttules, hyaline ascospores, 15 × 4.5–5 µm. The asexual morph is undetermined (Saccardo 1878).

Only the ITS sequence is available for D. meridionalis and in the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), D. meridionalis formed a sister clade to D. aspalathi and D. woodii.

Diaporthe mezerei Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. II: 126 (1901)
Typification details – N/A
Host – Daphne mezereum (Thymelaeaceae)
Distribution – Europe (Luxembourg)
Notes – Diaporthe mezerei was found on branches of Daphne mezereum and introduced by Feltgen (1901). Feltgen (1901) noted that this species has narrower asci and somewhat wider spores than those in the closely related taxon, D. leiphaemioides (current name Dendrostoma castaneum). Sequence data is not available for this species.

Typification details – Holotype, SCHM, Cheng 3603
Host – Michelia alba (Magnoliaceae)
Distribution – Asia (China)

Notes – Initially, this species was introduced as Phomopsis micheliae (Chang et al. 2005a). It was found from branches of woody plants, Michelia alba in Fujian, China. Later, this species was synonymized under Diaporthe micheliae based on molecular data (Gao et al. 2017). This species is characterized by scattered, immersed conidiomata, hyaline alpha and bata conidia. The sexual morph is undetermined. Cheng et al. (2005a) mentioned that this species is very similar to P. liriodendra, but D. micheliae (= P. micheliae) has regular and bigger conidiomata and richly branched conidiophores (Cheng et al. 2005a).

Only the ITS sequence is available for the type specimen (SCHM 3603), and in the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), D. michelina clustered in the D. sojae species complex.

Typification details – N/A
Host – Cytisus nigricans (Fabaceae)
Distribution – Europe (Slovenia)
Notes – Diaporthe microcarpa was found from dead branches of Cytisus nigricans. This species is characterized by stroma, with globose, black perithecia, short ostioles, 8-spored, fusoid asci, rounded at the apex, 50 × 8 μm, with fusoid, straight, not constricted in the middle, 4-guttules, hyaline ascospores, 15 × 4 μm, with very short filiform appendiculate at each apex (Saccardo 1891). Sequence data is not available for this species.

Diaporthe microplaca Sacc., Annls mycol. 10(3): 316 (1912)

Typification details – Holotype, Saccardo, 1897
Host – Lonicera sempervirens (Caprifoliaceae)
Distribution – Europe (Italy)
Notes – Diaporthe microplaca was reported from periderms of Lonicera sempervirens in Italy. The species is characterized by stromata initially covered with epidermis, maculiform, penetrating the wood, often with a black circumscribing line, perithecia, punctiform ostioles, fusoid asci, bifoveolate at the apex, 30–35 × 7 μm, a paraphysate, distichous, fusiform, obsolete 1-septate, straight, hyaline ascospores, 10–12 × 3 μm (Saccardo 1912). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe microstroma Ellis & Everh., J. Mycol. 9(4): 224 (1903)

Typification details – Holotype, NY, Dearness 2986
Host – Acer sp. (Sapindaceae)
Distribution – North America (Canada)
Notes – Diaporthe microstroma was found from the bark of Acer sp. in Canada. The species has small, rounded stromata, 1–4 (mostly 1–2) perithecia in a stroma, small, with a short conical to papiliform ostiole, clavate to oblong asci, 80–100 × 15–20 μm, with abundant but evanescent paraphyses, biseriate, 1-septate, constricted, fusoid and acutely pointed when immature, more obtuse when mature ascospores, 22–30 × 10–13 μm (Ellis & Everhart 1903a). The asexual morph is undetermined. It was stated that D. microstroma differs from D. ontariensis in its larger sporidia and the black circumscribing line not penetrating the wood (Ellis & Everhart 1903a). Sequence data is not available for this species.

Typification details – Holotype, BRIP 54884e
Hosts – Chrysanthemoides monilifera subsp. Rotundata (Asteraceae), Rapistrum rugosum (Brassicaceae), Litchi chinensis (Sapindaceae), Lithocarpus craibianus, L. glaber (Fagaceae).
Distribution – Asia (China), Oceania (Australia)
Notes – *Diaporthe middletonii* was originally described from the dead stem of *Rapistrum rugosum* and the living stem (including leaf or petiole) of *Chrysanthemoides monilifera* subsp. *rotundata* in Australia. Later, this species was found on different host plants; *Litchi chinensis* (Sapindaceae), *Lithocarpus glaber* (Fagaceae), and *Lithocarpus craibianus* (Fagaceae) in China (Thompson et al. 2015). *Diaporthe middletonii* morphologically is well-fitted with the species concept of *Diaporthe*. The species has aggregated in scattered groups or multilocular pycnidial conidiomata, subglobose ostiolate, neck absent, perithecia not seen, produced fusiform to cylindrical, rounded at the apex, obconically truncate at base, 2-guttules, hyaline alpha conidia, and flexuous, mostly J-shaped, hyaline beta conidia. This species is characterized by having cream conidial droplets (Thompson et al. 2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe middletonii* clustered in the *D. sojae* species complex.

Typification details – Holotype, HGUP 9167; ex-type, GUCC 9167
Host – *Millettia reticulata* (Fabaceae)
Distribution – Asia (China)
Notes – *Diaporthe millettiae* was found on the leaves of *Millettia reticulata* in Guangxi, China. However, Long et al. (2019) did not report its life mode (whether it was found as endophytic, pathogenic, or saprobic). This species produced abundant, fusiform, narrowed towards apex and base, mostly 2-guttules, hyaline alpha conidia, scarce to abundant, flexuous to large J-shaped beta conidia. The sister taxa *D. pseudomangiferae* and *D. perseae* produced only alpha conidia and alpha, beta, gamma conidia respectively (Long et al. 2019). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe millettiae* clustered in the *D. arecae* species complex.

Typification details – Holotype, HKAS 107539; ex-type, CGMCC 3.20097 = GZCC 19-0066
Host – On a decaying woody branch
Distribution – Asia (China)
Notes – This species is saprobic on the decaying woody branch and is only known by its holotype and paratype specimens (Dissanayake et al. 2020). Morphological characters comprise dark brown to black conidiomata on PDA, solitary or clustered in groups of 3–5 conidiomata, with cylindrical, aseptate, straight or sinuous, densely aggregated, terminal, slightly tapered towards the apex conidiophores, and fusiform or oval, both ends obtuse, 2-guttules, hyaline alpha conidia, beta conidia not observed. Detailed descriptions and illustrations of the asexual morph for this species are available in Dissanayake et al. (2020). The sexual morph is not observed.

The phylogenetic analysis showed that *D. minima* is closely related to *D. bohemiae*, *D. juglandicola* and *D. rostrata*. However, *D. minima* differs from these three species in having smaller alpha conidia (Fan et al. 2016, Yang et al. 2017b, Dissanayake et al. 2020).

Diaporthe minuscula Sacc. & Specg., Michelia 1(no. 4): 387 (1878)
Typification details – Holotype, PAD, Saccardo, 1877
Host – *Campanula trachelium* (Campanulaceae)
Distribution – Europe (Italy)
Notes – This species was introduced based on morphological data. It was found from the stems of *Campanula trachelium* in Italy (Saccardo 1878). Morphological characters include globose perithecia, piercing ostiole, 8-spored, fusoid asci, 45 × 7–8 μm, with fusoid, constricted 1-septate, 4-guttules, hyaline ascospores, 13–15 × 3–4 μm. The asexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe minuscula* clustered in the *D. sojae* species complex.
Diaporthe minuta Nitschke, Pyrenomyc. Germ. 2: 309 (1870)
Typification details – Holotype, HKU (M) 12659 [type of *D. minuta* (2001)]
Hosts – *Ceanothus americanus* (Rhamnaceae), *Pennisetum* sp., *P. purpureum* (Poaceae)
Distribution – Asia (Hong Kong), North America (USA)
Notes – *Diaporthe minuta* was introduced by Nitschke (1870) from *Ceanothus americanus* in New York, USA. According to the original description, the ascospores of *Diaporthe minuta* are markedly smaller than other species. Spermogonia are, minute, subglobose, unilocular, apex finally protruding through the periderm, with subcylindrical, 2-guttules, straight, hyaline spermatia, 6 × 2 μm. Sequence data is not available for this species.

Typification details – Holotype, HKAS 107540; ex-type, CGMCC 3.20098 = GZCC 19-0215
Host – Unidentified
Distribution – Asia (China)
Notes – *Diaporthe minusculata* was introduced by Dissanayake et al. (2020), fungi found on decaying branches in Guizhou, China. The species produced fusiform or oval, both ends obtuse, 2-guttules, hyaline alpha conidia, 7–10 × 2–3 μm, while beta conidia was not observed. The other morphological characters of asexual morph were described and illustrated by Dissanayake et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe minusculata* clustered in the *D. sojae* species complex.

Diaporthe mitis Sacc., Michelia 2(no. 6): 61 (1880)
Typification details – N/A
Host – *Ribes rubrum* (Grossulariaceae)
Distribution – Europe (France)
Notes – This species was introduced with only morphological data. It was found on young dry twigs of *Ribes rubrum* in France. *Diaporthe mitis* is characterized by loosely clustered perithecia, short and conoid ostiolate, 8-spored, fusoid asci, 70–75 × 9–10 μm, bifoveolate apex, aparaphysate, and fusoid, with rather sharp curves on both sides, constricted, 1-septate, 4-guttules, hyaline ascospores, 15 × 3–4 μm (Saccardo 1880). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe mitteriana Syd., Annls mycol. 31(1/2): 89 (1933)
Typification details – Holotype, Mitter 25
Host – *Porana paniculata* (Convolvulaceae)
Distribution – Asia (India)
Notes – *Diaporthe mitteriana* was introduced by Sydow & Mitter (1933) from a dead branch of *Porana paniculata* in Uttar Pradesh, India. This species was introduced with morphological character of stromata with irregular black lines in the wood, and loosely scattered or slightly gregarious perithecia, 4–8-spored, fusoid asci, 35–43 × 7–8.5 μm, pseudoparaphyses, oblong to fusoid or biconical, 1-septate, constricted, 1–2-guttules, hyaline ascospores, 7.5–11 × 2.5–3.5 μm (Sydow & Mitter 1933). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe monetii Gomzhina, in Gomzhina & Gannibal, Persoonia 114(3): 569 (2022)
Typification details – Holotype, LEP 87904; ex-type, MF-Ha18-049 = VKM F-4879
Host – *Helianthus annuus* (Asteraceae)
Distribution – Russia
Notes – *Diaporthe monetii* was introduced by Gomzhina & Gannibal (2022). The species was found in healthy seeds of *Helianthus annuus* in Tchelyabinsk Region, Russia. The species produced pycnidial conidiomata on PSA and OMA, often covered with abundant aerial mycelia, ostiolate, sometimes papillate, straight or slightly curved, branched, subhyaline conidiophores, with subcylindrical, slightly swollen in the middle, subhyaline conidiogenous cells, produced curved, flexuous, lunate, mostly curved, resembling a boomerang shape, hyaline beta conidia, alpha and gamma conidia not observed. The detailed descriptions and illustrations of asexual morph for this species were given in Gomzhina & Gannibal (2022). The sexual morph is undetermined. Phylogenetically, *D. monetii* forms a distinct clade which is closely related to *D. vangoghii* (Gomzhina & Gannibal 2022). However, *D. monetii* differs from *D. vangoghii* by producing only beta conidia, while *D. vangoghii* produced three types of conidia. A pathogenicity test was performed by Gomzhina & Gannibal (2022) which indicated that *D. monetii* was pathogenic to cockleburs and ragweed. Based on the pathogenicity test result, Gomzhina & Gannibal (2022) noted that the main target of the infection is stem of sunflower and seeds could be an infection source.

Diaporthe mori Berl., Fungi Moric. (Padova) 5: 9 (1888)
= *Phoma moricola* Sacc., Michelia 1(no. 5): 525 (1879)
= *Phomopsis moricola* (Sacc.) Grove, G. bot. ital., n.s. 15: 50 (1915)
Typification details – N/A
Host – *Morus alba* (Moraceae)
Distribution – Europe (Italy, United Kingdom)
Notes – This species was found on *Morus alba* in Italy, and was introduced using morphological data. It is characterized by having clavate asci, 36–40 × 7 μm, with 1-septate ascospores, 10 × 3 μm (Saccardo 1891). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, ZHKUCC 22-0072; ex-type, ZHKUCC 22-0072
Host – *Morinda officinalis* (Rutaceae)
Distribution – Asia (China)
Notes – *Diaporthe morindae* was introduced by Luo et al. (2022). This species was isolated from a healthy stem of *Morinda officinalis* in Guangdong Province, China. Phylogenetically, the species is related to *D. hubeiensis* and *D. tectoane* (Luo et al. 2022). However, the alpha conidia of *D. hubeiensis* and *D. tectoane* are smaller than those of *D. morindae*. A detailed description for *D. morindae* was given in Luo et al. (2022).

Typification details – Holotype, ZHKUCC 22-0069; ex-type, ZHKUCC 22-0069; ex-paratype, ZHKUCC 22-0070, 22-0071
Host – *Morinda officinalis* (Rutaceae)
Distribution – Asia (China)
Notes – *Diaporthe morindendophytica* was introduced by Luo et al. (2022) based on morphological characteristics, phylogenetic analyses, and PHI test. The species was isolated from a healthy stem of *Morinda officinalis* in Guangdong Province, China. Phylogenetically, this species clustered with *D. tectonendophytica* (Luo et al. 2022). However, *D. morindendophytica* has smaller pycnidia than those of *D. tectonendophytica* (120 ± 450 μm × 70 ± 20 μm vs. 542 × 660 μm), and it has bigger alpha and beta conidia than those of *D. tectonendophytica* (alpha conidia: 6 ± 0.5 × 3 ± 0.3 vs. 5 × 2.2 μm, beta conidia: 20 ± 3 μm × 2 ± 0.2 vs. 23 × 1.3 μm) (Udayanga et al. 2012a, Luo
et al. 2022). These species also have different culture characteristics. A detailed description for *D. morindendophytica* was given in Luo et al. (2022).

Typification details – Holotype, BRIP 60190a
Host – *Xanthium strumarium* (Asteraceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe moriniae* was introduced by Tan & Shivas (2022) based on molecular data. It was found from stem lesion of *Xanthium strumarium* in Northern Territory, Australia. In phylogenetic tree based on ITS, tub2, and tef1-α sequences, *D. moriniae* is closely related to *D. guangdongensis* with high bootstrap support (Tan & Shivas 2022), while *D. guangdongensis* formed within the *D. sojae* species complex in Norphanphou et al. (2022, Fig. 1).

Diaporthe moriokaensis Sawada, Bull. Govt Forest Exp. Stn Meguro 53: 172 (1952)
Typification details – N/A
Host – *Acer formosum* (Sapindaceae)
Distribution – Asia (Japan), Europe, North America
Notes – *Diaporthe moriokaensis* was found from the leaves of *Acer formosum* in Kanagawa, Japan. This species was introduced based on morphological character of sexual morph (Sawada 1952). The asexual morph is undetermined. Sawada (1952) described *D. moriokaensis*, however, based on the description, Kobayashi (1970) suggested that this species is identical to *D. dubia*, and should be a synonym of *D. dubia*. Sequence data are needed to confirm the status and placement of these two species.

Diaporthe mucosa G. Winter ex Sacc., Syll. fung. (Abellini) 1: 609 (1882)
Typification details – N/A
Host – *Carpinus betulus* (Betulaceae)
Distribution – Europe (Germany)
Notes – *Diaporthe mucosa* was introduced with only morphological data, a species found from branches of *Carpinus betulus* in Germany. This species has globose perithecia, covered by epiderm, erumpent ostiole, 8-spored, subfusoid asci, 87–100 × 10 µm, with 1-septate at the middle, very gently constricted, obtuse on both ends, hyaline ascospores, covered with a thick hyaline mucous sheet, 17–19 × 5–6 µm. The asexual morph is undetermined. There is no other record except the original description for this species (Saccardo 1882a). Sequence data is not available for this species.

Diaporthe mucronata (Peck) Sacc., Syll. fung. (Abellini) 1: 629 (1882)
Typification details – Holotype, Peck s.n.
Host – *Salix* sp. (Salicaceae)
Distribution – North America (USA)
Notes – *Valsa mucronata* was synonymized under *Diaporthe* by Saccardo (1882a). The species was found on dead branches of *Salix* sp. in New York, USA. The species was introduced with sexual morph characters of 4–8 perithecia in a stroma, nestling in the inner bark, with ostiolate, clavate to lanceolate asci, and cylindrical, 1-septate, hyaline ascospores, with a short appendage at both sides (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe mucronulata Sacc., Michelia 2(no. 8): 568 (1882)
Typification details – Holotype, Ellis 3681
Host – *Aster* sp. (Asteraceae)
Distribution – North America (USA)

Notes – *Diaporthe mucronulata* was found from dead stems of *Aster* sp. in New Jersey, USA. This species is characterized by gregarious, globose perithecia, immersed in the surface of the bark, fusoid asci, 60 × 10 μm, ap paraphysate, and fusoid, 1-septate at the middle, constricted, 4-guttules, hyaline ascospores, 14–15 × 6 μm (Saccardo 1882b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe muehlenbeckiae Tassi, Revue mycol., Toulouse 18(no. 72): 158 (1896)

Typification details – N/A
Host – *Muehlenbeckia complexa* (Polygonaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe muehlenbeckiae* was introduced based on morphological data, species found from dead branches of *Muehlenbeckia complexa* in Italy. This species was originally described as having blackened substrate surrounded stromata, globular or slightly flattened at the base, black perithecia, sub-cylindrical asci, 50–60 × 7–8 μm, and fusoid, 1-septate, constricted at the middle, hyaline, 4-guttules ascospores, 10–12 × 2–2.5 μm (Tassi 1896a). Spermogonia were reported as phomatoidea, with ellipsoid, 2–3 × 1.5–2 μm spermatia. Sequence data is not available for this species.

Typification details – Holotype, ZJUD98H; ex-type, ZJUD98 = CGMCC 3.17258 = ICMP 20656

Hosts – *Citrus grandis*, *Citrus maxima*, *Citrus* sp. (Rutaceae)
Distribution – Asia (China)

Notes – This species was introduced with molecular data. The asexual morph characters comprise conidiomata with single necks erumpent through host bark, conidiophores reduced to conidiogenous cells which are unbranched, straight, or slightly curved, with ellipsoid, aseptate, 1–2-guttules, hyaline alpha conidia, beta conidia not observed (Huang et al. 2015). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe multiguttulata* formed a distinct clade. Thus, we accept it as a singleton species in *Diaporthe*.

Diaporthe muralis Speg., Michelia 1(no. 5): 458 (1879)

Typification details – Holotype, PAD, Spegazzini, Feb. 1878; PAD, Spegazzini, Oct. 1878

Hosts – *Sedum album*, *S. rhodiola*, *S. reflexum* (Crassulaceae)
Distribution – Europe (Italy), North America (Canada)

Notes – *Diaporthe muralis* was introduced by Spegazzini (1879) and found from dead stems of *Sedum album* and *S. reflexum* in Italy. The species has stromata, with globose perithecia, cylindrical to conoid ostiole, oblong to fusoid asci, 40–50 × 8–10 μm, and oblong to ellipsoid, 1-septate, constricted, guttules, hyaline ascospores, 15 × 4 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe murrayi (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 669 (1882)

≡ *Sphaeria murrayi* Berk. & M.A. Curtis, Grevillea 4(no. 32): 147 (1876)

Typification details – Holotype, Ravenel 5706
Host – *Malus* sp. (Rosaceae)
Distribution – North America (USA)

Notes – *Diaporthe murrayi* was introduced as *Sphaeria murrayi* which was found from *Malus* sp. in New England, USA. This species was introduced with morphological data of lanceolate asci, and oblong, 1-septate, constricted at the middle, 4-guttules, hyaline ascospores (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe musae Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 363 (1909)
Typification details – Holotype, LPS, Spegazzini, Mar. 1905
Host – *Musa sapientum* (Musaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe musae* was found from rotten leaves of *Musa sapientum* in Jujuy, Argentina. This species was introduced with morphological data, scattered perithecia, completely immersed in parenchyma, black, globose, 150 µm diam., with carbonaceous ostiole, 8-spored, fusoid to subclavate asci, 40–58 × 8–10 µm, aparaephyse, obtuse on both sides, constricted at the middle, coarsely 4-guttules, hyaline ascospores, 10–13 × 5–6 µm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe musigena Crous & R.G. Shivas, Persoonia 26: 119 (2011)
Typification details – Holotype, CBS H-20579; ex-type, CPC 17026, 17025 = CBS 129519
Host – *Magnolia champaca* (Magnoliaceae), *Musa* sp. (Musaceae)
Distribution – Asia (Thailand), Oceania (Australia)
Notes – *Diaporthe musigena* was isolated from *Musa* sp. in Australia. This species was introduced with asexual morph morphological data (Crous et al. 2011a). Pycnidia was produced on pine needle agar, subglobose, elongated black necks, phialidic, cylindrical, terminal and lateral conidiogenous cells, hyaline paraphyses, with fusiform, aseptate, hyaline alpha conidia, spindle-shaped, aseptate, hyaline, straight to curved beta conidia, and ellipsoid to fusoid, aseptate, hyaline gamma conidia (Crous et al. 2011a).

In the phylogenetic analysis of Norphanphoun et al. (2022, Fig. 1), *Diaporthe musigena* strain KHFZL006 did not cluster with the type strain CBS129519, but both strains clustered within *D. arecae* species complex. Therefore, further studies are required to find a synonym for *D. musigena* strain KHFZL006.

Typification details – Holotype, URM 92587; ex-type, URM 7972
Host – *Myracrodruon urundeuva* (Anacardiaceae)
Distribution – South America (Brazil)
Notes – *Diaporthe myracrodruonis* was found from the leaves of *Myracrodruon urundeuva* in Pernambuco, Brazil. The species produced alpha and beta conidia. Detailed asexual descriptions and illustrations of this species were mentioned in Silva et al. (2019). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe myracrodruonis* clustered in the *D. sojae* complex.

Typification details – Holotype, HSAUP194.91
Host – *Camellia sinensis* (Theaceae)
Distribution – Asia (China)
Notes – *Diaporthe nannuoshanensis* was reported by Huang et al. (2021b) from diseased leaves of *Camellia sinensis* in China. It produced globose to subglobose conidiomata, black, brown to dark brown, clustered in groups of 3–7 pycnidia, coated with white and greyish hyphae, with exuding cream conidial droplets from ostioles, phialidic, aggregated, cylindrical, less branched, 0–2-septate, hyaline conidiophores, cylindrical, ampulliform conidiogenous cells, filiform, bent or hamate, aseptate, hyaline beta conidia (Huang et al. 2021b). The sexual morph is undetermined. In phylogenetic tree, *D. nannuoshanensis* formed a distinct clade, and closely related to *D. garethjonesii* (current name: *D. amygdali*). However, *D. nannuoshanensis* differs from *D. garethjonesii* in its types and sizes of conidia (Hyde et al. 2016, Huang et al. 2021b).
Diaporthe neapolitana Sacc., Michelia 1(no. 4): 389 (1878)
Typification details – Holotype, PAD, Magnaguti-Rondinini, Jul. 1877
Host – *Mesembryanthemum acinaciforme* (Aizoaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe neapolitana* was introduced by Saccardo (1878). It was found from dead branches of *Mesembryanthemum acinacifolium* in Posillipo, Italy. This species was introduced based on morphological data, stromata, with gregarious, globose, and obtuse at the apex perithecia, fusoid asci, 50–60 × 10–12 µm, aseptate, and oblong to fusoid, constricted at the middle, 4-guttules, hyaline ascospores, 12–15 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. There is no other record except the original description for this species. Sequence data is not available for this species.

Diaporthe nebulae Lesuthu, Mostert, Spies, Moyo & Halleen, Plant Dis. 103(5): 813 (2019)
Typification details – Holotype, PREM 62198; ex-type, CBS142721 = STE-U 8525 = PMM 1681
Hosts – *Cyclopia longifolia* (Fabaceae), *Vitis* sp., *Vitis vinifera* (Vitaceae)
Distribution – Africa (South Africa)
Notes – *Diaporthe nebulae* was found from the wood of *Vitis vinifera* in the Western Cape, South Africa. The morphological characters of its asexual morph were observed from fungal sporulation in PDA media. The species produced alpha and beta conidia, while gamma conidia were not observed. Detailed descriptions and illustrations were given by Lesuthu et al. (2019). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe nebulae* clustered in the *D. oncostoma* species complex.

Diaporthe nelumbonis Sawada ex R. Kirschner, Mycol. Prog. 17(1–2): 280 (2017)
Typification details – Holotype, BPI 352726; isotype, PPMH; TNM
Host – *Nelumbo nucifera* (Nelumbonaceae)
Distribution – Asia (Taiwan)
Notes – *Diaporthe nelumbonis* was introduced as *Phyllosticta nelumbonis* which was found from the leaf of *Nelumbo nucifera* in Taiwan (van der Aa & Vaney 2002). The species produced oblong to ellipsoidal, straight or slightly curved, rounded at the apex, aseptate alpha conidia, with attenuated towards the base, mostly with 2-large-guttules, in some cases, appear to be divided into smaller guttules, beta conidia not observed (Chen & Kirschner 2018). The detailed morphological characters of asexual morph were described and illustrated in Sawada (1959) and Chen & Kirschner (2018).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe nelumbonis* clustered in the *D. arecae* species complex.

Diaporthe neoarctii R.R. Gomes, Glienke & Crous, Persoonia 31: 25 (2013)
Typification details – Holotype, CBS H-21094; ex-type, CBS 109490 = GB 6421 = AR 3450
Host – *Ambrosia trifida* (Asteraceae)
Distribution – North America (USA)
Notes – *Diaporthe neoarctii* was isolated from *Ambrosia trifida* in New Jersey, USA. The description and illustration of the asexual morph were provided in Gomes et al. (2013). The species can be differentiated from *D. arcii* by its size of alpha conidia and molecular data. Beta and gamma conidia were not observed (Gomes et al. 2013).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe neoarctii* clustered in the *D. sojae* species complex.

Diaporthe neoarionikayaporum Doilom, Dissan. & K.D. Hyde, Fungal Divers. 82: 16 (2016)
Typification details – Holotype, MFLU 15-3539; ex-type, MFLUCC 14–1136 = MKT 168/1
Diaporthe neoraonikayaporum was found as associated with branch and twig dieback lesions on Tectona grandis in Chiang Rai, Thailand. However, pathogenicity data are not available for this species. The species produced alpha, beta and gamma conidia. A detailed description and illustration of the asexual morph were provided in Doilom et al. (2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe neoraonikayaporum clustered in the D. sojae species complex.

Typification details – N/A
Hosts – Nepeta nepetella, N. tuberosa (Lamiaceae)
Distribution – Europe (Spain)
Notes – Diaporthe nepetae was found from dry branches and stems of Nepeta tuberosa in Spain. The description and illustration of both morphs were described and illustrated in the original publication. The sexual morph has pseudostromata, scattered, gregarious, immersed perithecia, cylindrical ostiole, oblong asci, 50–70 × 12 µm, ellipsoid, 1-septate, 4-guttules, hyaline ascospores, 10–14 × 4.5–5.5 µm. The asexual morph has globose and erumpent conidiomata, ovoid, hyaline conidia, 2–4-guttules, 6–8 × 2–3 µm (González 1914). Sequence data is not available for this species.

Diaporthe nerii Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 367 (1909)
Typification details – Holotype, LPS, Spegazzini, Jun. 1906
Host – Nerium oleander (Apocynaceae)
Distribution – Europe (Spain)
Notes – Diaporthe nerii was found from rotten branches of Nerium oleander in Buenos Aires, Spain. The morphological characters are immersed, black and globose perithecia, 140–150 µm, with papillate-ostiolate, fusoid to subclavate asci, 50–55 × 8–10 µm, apanaphysate, subelliptical to elliptical, obtuse on both sides, 1-septate, constricted at the middle, hyaline, 2-guttules ascospores, 14–15 × 4–5 µm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe niessliana Sacc. [as ‘niessleana’], Syll. fung. (Abellini) 1: 623 (1882)
= Diaporthe niesslii Sacc., Michelia 1(no. 4): 391 (1878)
Typification details – Holotype, PAD, Spegazzini, Jan. 1878
Host – Acer pseudoplatanus (Sapindaceae)
Distribution – Europe (Italy)
Notes – Diaporthe niessliana was reported by Saccardo (1882a). The species has subglobose, black ascomata, with fusoid asci, 70–75 × 8–10 µm, producing filiform, 1–3-septate, eguttulate, hyaline ascospores, 17.6–28.1 × 0.92–1.81 µm. Sequence data is not available for this species. Index Fungorum (2023) currently lists this species as the current name for D. pustulata. However, we could not find any published data that confirm D. pustulata as a synonym of this species. Therefore, we treat both species as distinct until further information becomes available.

Diaporthe nigra Brahmanage & K.D. Hyde, Fungal Divers. 100: 185 (2020)
Typification details – Holotype, JZBH320170; ex-type, JZB320170
Host – Ballota nigra (Lamiaceae)
Distribution – Europe (Italy)

Index Fungorum (2023) currently lists this species as the current name for D. pustulata. However, we could not find any published data that confirm D. pustulata as a synonym of this species. Therefore, we treat both species as distinct until further information becomes available.
Diaporthe nigra was reported by Brahmanage & Hyde in Hyde et al. (2020), species found from dead stems of *Ballota nigra* in Italy. The description and illustration of the asexual morph were mentioned in Hyde et al. (2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe nigra* clustered in the *D. oncostoma* species complex.

- Typification details – N/A
- Host – *Castanea sativa* (Fagaceae)
- Distribution – Europe (Gaul)

Notes – *Diaporthe nigrocincta* was found on *Castanea sativa*. The authors were unable to find the original description of the species. However, Saccardo (1891) provided the sexual description for this species (as *nigro-cincta*), and it is characterized by having stromata with black circumscribing zone, perithecia, ostiole protruding through the fissured periderm, cylindrical asci, 110 × 10 µm, aparaphysate, ellipsoid, 1-septate at the middle, not constricted, hyaline, 2-guttules ascospores, 12–20 × 7.5 µm. Sequence data is not available for this species.

- Typification details – Holotype, NY, Holway, Jul. 1889
- Host – *Alnus* sp. (Betulaceae)
- Distribution – North America (USA)

Notes – *Diaporthe nivosa* was found from dead *Alnus* sp. in Michigan, USA. The morphology of this species was mentioned with stromata without black circumscribing line, mostly 8–12 immersed perithecia in the unaltered substance of the bark, raised in a pustulate and contracted above with short necks, with erumpent black papilliform ostiole, with white margin. Asci are about 60 × 12 µm, and ascospores are oblong, straight or very slightly curved, 1-septate, constricted, 4-guttules, hyaline, 12–16 × 3–4 µm. The asexual morph is undetermined. There is no other record except the original description for this species (Ellis & Everhart 1890). Sequence data is not available for this species.

Diaporthe nodosa Fuckel, Jb. nassau. Ver. Naturk. 23–24: 210 (1870)
- = *Phomopsis syringina* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 271 (1906)
- = *Phoma syringina* Sacc., Syll. fung. (Abellini) 3: 82 (1884)
- Typification details – Holotype, BPI 797300
- Host – *Syringa vulgaris* (Oleaceae)
- Distribution – Europe (Germany)

Notes – *Diaporthe nodosa* was reported by Fuckel (1870). This species was found on *Syringa vulgaris* in Germany, and was introduced using morphological data. It is characterized by having oblong asci, 50 × 5 µm, with 1-septate ascospores, 10 × 2.5 µm (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe nomurae Hara [as ‘nomurai’], Diseases of Cultivated Plants: 140 (1925)
- Typification details – Holotype, TNS, Hara, 1921; CBS 157.29 (representative strain)
- Host – *Morus* sp. (Moraceae)
- Distribution – Asia (Japan)

Notes – *Diaporthe nomurae* was found from *Morus bombycis* in Honshu, Japan (Hara 1925). The species has only molecular data, and morphological characters of this species were not found here.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe nomurae* clustered in the *D. eres* species complex (= *D. alnea* species complex).
Typification details – Holotype, BRIP 59718a
Host – Mangifera indica (Anacardiaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe norfolkensis was introduced by Tan & Shivas (2022) based on molecular data. It was found from panicle of Mangifera indica in Norfolk Island, Australia. In phylogenetic tree based on ITS, tub2, and tef-1-α sequences, D. norfolkensis is closely related to D. bounty (Tan & Shivas 2022). The species also clustered with other species which are members of the D. arecae species complex designated by Norphanphoun et al. (2022).

Typification details – Holotype, VPRI 22429b (includes ex-type culture); isotype, BRIP 54801
Host – Nothofagus cunninghamii (Nothofagaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe nothofagi was introduced by Tan et al. (2013) from dry branches of Nothofagus cunninghamii. The morphological characters of its asexual morph were observed from fungal sporulation in PDA media. The descriptions and illustrations were mentioned in the original publication (Tan et al. 2013). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe nothofagi clustered in the D. rudis species complex.

Typification details – Holotype, CBS H-20463; ex-type 4-27/3-1 = CBS 127270 (MAT1-2) and 5/27/3-3 = CBS 127271 (MAT1-1)
Hosts – Actinidia deliciosa, Actinidia sp. (Actinidiaceae), Asclepias syriaca (Apocynaceae), Aspalathus linearis (Apocynaceae), Cicer arietinum (Fabaceae), Citrus aurantifolia, C. aurantiifolia, C. japonica (Rutaceae), Datura stramonium (Solanaceae), Daucus carota (Apiaceae), Galium sp. (Rubiaeae), Glycine max (Fabaceae), Helianthus annuus (Asteraceae), Hydrangea macrophylla (Hydrangeaceae), Lupinus albus (Fabaceae), Malva parviflora (Malvaceae), Maytenus ilicifolia (Celastraceae), Polygonatum odoratum (Asparagaceae), Prunus dulcis (Rosaceae), Rapistrum rugosum (Brassicaceae), Sambucus gaudichaudiana (Adoxaceae), Sisymbrium orientale (Brassicaceae), Sonchus oleraceus (Asteraceae), Sorghum bicolor (Poaceae), Verbena sp. (Verbenaceae), Vicia sativa (Fabaceae), Vigna radiata (Fabaceae), Vitis sp., V. vinifera (Vitaceae), Xanthium strumarium (Asteraceae)
Distribution – Africa (South Africa), Europe (Croatia, France, Italy, Portugal, Romania, Serbia, Spain), North America (USA), Oceania (Australia, New Zealand), South America (Brazil)
Notes – Diaporthe novem is phylogenetically close to D. chailletii (Santos et al. 2011). This species differs from D. chailletii by having longer perithecial necks, shorter and wider ascii, and cylindrical ascospores while D. chailletii has fusoid to ellipsoid ascospores (Santos et al. 2011). There is no other important morphological character to distinguish it from other Diaporthe species (Santos et al. 2011). The pathogenicity was confirmed by Santos et al. (2011). Diaporthe novem was invalidly synonymized under D. pseudolongicolla. Thus, the species is retained. Editorial comment from Index Fungorum 2023 mentioned that the epithet is a cardinal numeral (not an ordinal), and Art. 23.6(b) does not apply; see Ex. 15 (Shenzhen).
Diaporthe nucis-avellanae Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. II: 121 (1901)

Typification details – N/A
Host – *Corylus avellana* (Betulaceae)
Distribution – Europe (Luxembourg)
Notes – *Diaporthe nucis-avellanae* was introduced by Feltgen (1901) from dry branches of *Corylus avellana*. It is characterized by black and globose or elliptical ovate ascomata, with spherical or short blunt-cylindrical ostioles, oblong or fusiform, or almost cylindrical to fusiform asci, 47–58 × 6.5–7.5 μm, bluntly fusiform, straight or curved, 1-septate, constricted, hyaline, 4-guttules ascospores, 13–18 × 4–5 μm, with a short-conical or short-cylindrical, appendages at both ends, 2.5–3 μm (Feltgen 1901). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe oblita Sacc. & Speg., Michelia 1(no. 4): 386 (1878)
Typification details – Holotype, PAD, Saccardo, Apr. 1877
Host – *Artemisia camphorata* (Asteraceae)
Distribution – Europe (Italy)
Notes – *Diaporthe oblita* was found from the corticate branches of *Artemisia camphorata* in Italy. It is characterized by globose perithecia, the base embedded in the wood, with short rostellate ostioles, fusoid asci, 45–50 × 8 μm, aparaphysate, fusoid, 1-septate, constricted, hyaline, 4-guttules ascospores, 12–14 × 4–5 μm. The asexual morph is undetermined. There is no other record except the original description for this species (Saccardo 1878). Sequence data is not available for this species.

Typification details – N/A
Host – *Hypericum sp.* (Hypericaceae)
Distribution – Europe (England, Italy, Scotland)
Notes – *Diaporthe obsoleta* was found from the stem and branches of *Hypericum sp.* in Italy. This species was introduced based on morphological data. It is characterized by dark brown and globose perithecia, cylindrical to conoid ostiole, with cylindrical to fusiform asci, 50–60 × 10 μm, and oblong to fusoid, 1-septate, constricted, hyaline, 4-guttules ascospores, 15–18 × 4–4.5 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe obtusifoliae Crous, Persoonia 39: 437 (2017)
Typification details – Holotype, CBS H-23318; ex-type, CPC 32336 = CBS 143449
Host – *Acacia obtusifolia* (Fabaceae)
Distribution – Oceania (Australia)
Notes – Crous et al. (2017) introduced this species from *Acacia obtusifolia* in Australia. It can be morphologically distinguished from typical *Diaporthe* spp. by forming broadly ellipsoid conidia (Crous et al. 2017). Compared to closely related species *D. acaciarum* and *D. acaciigena*, it differs in having conidia that measure 12–18 × 6–7 μm (Crous et al. 2017). The alpha conidia of *D. acaciarum* are 6–7.5 ×2–3 μm (Crous et al. 2014), while the alpha conidia of *D. acaciigena* are ellipsoid to subclavate, measuring 9–12 × 4–7 μm (Crous et al. 2011, 2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe obtusifoliae* was initially placed within the *D. amygdali* species complex (= *D. pustulata* species complex). The species clustered with *D. acaciigena* (Norphanphoun et al. 2022). However, *D. acaciigena* has been recognized as a distinct species separate from the *D. amygdali* species complex based on GMYC, PTP analyses, and phylogenetic network (Hilário et al. 2021a). Consequently, it can be concluded that *D. obtusifoliae* does not belong to the *D. amygdali* species complex.
Diaporthe occidentalis Sacc. & Speg., Michelia 1(no. 4): 384 (1878)

= *Phoma occidentalis* Sacc., Michelia 2(no. 6): 95 (1880)

= *Phoma occidentalis* var. *irregularis* Traverso, Malpighia 19: 142 (1905)

= *Phomopsis occidentalis* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 259 (1906)

= *Phomopsis occidentalis* var. *irregularis* (Traverso) Sacc., D. Sacc. & Traverso, in Saccardo & Saccardo, Syll. fung. (Abellini) 18: 266 (1906)

Typification details – Holotype, PAD, Saccardo, Feb. 1877

Host – *Gleditsia triacanthos* (Fabaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe occidentalis* was found from the corticate branches of *Gleditsia triacanthos* in Italy. It is characterized by gregarious, globose perithecia, with ostioles, 8-spored, clavate to fusoid asci, 45–55 × 7–8 µm, aparaphysate, ovate to oblong, constricted at the middle, obtuse on both sides, hyaline, 4-guttules ascospores, 12–14 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe occultata (Fr.) Sacc., Syll. fung. (Abellini) 1: 675 (1882)

≡ *Sphaeria occultata* Fr., Elench. fung. (Greifswald) 2: 72 (1828)

Typification details – N/A

Host – *Syringa* sp. (Oleaceae)

Distribution – Europe (Germany)

Notes – *Sphaeria occultata* was synonymized under *Diaporthe occultata* by Saccardo (1882a). The species was found from the branches of *Syringa* sp. in Germany. It is characterized by immersed, scattered stromata with black cortical and ostiolate. Sequence data is not available for this species.

Diaporthe ocoteae Crous & M.J. Wingf., Persoonia 36: 397 (2016)

Typification details – Holotype, CBS H-22627; ex-type, CPC 26217 = CBS 141330

Host – *Ocotea obtusata* (Lauraceae)

Distribution – Europe (France)

Notes – *Diaporthe ocoteae* was introduced by Crous et al. (2016b). It was found on leaves of *Ocotea obtusata* in Réunion, France. This species was introduced with morphological characters and multigene analysis. The asexual morph morphological character of this fungi was described and illustrated in the original publication (Crous et al. 2016b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe ocoteae* forms a basal clade to *D. rudis* species complex. Thus, we accept it as a singleton species in *Diaporthe*.

Diaporthe ocularia (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 616 (1882)

≡ *Valsa ocularia* Cooke & Ellis, Grevillea 6(no. 37): 11 (1877)

Typification details – Holotype, Ellis 2488

Host – *Ilex glabra* (Aquifoliaceae)

Distribution – North America (USA)

Notes – *Diaporthe ocularia* was recombined from *Valsa ocularia*, species found from branches of *Ilex glabra* in New Jersey, USA. It has perithecia in a pale stroma, with erumpent and cylindrical, ostiole, clavate asci, and fusiform, 1–3-septate, hyaline, 4-guttules ascospores, 25 × 4 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HHUF 30565

Host – *Homo sapiens* (mycelium isolated from the diseased human eye)

Distribution – Asia (Japan)
Notes – *Diaporthe oculi* was introduced based on morphological characters and multigene analysis (Ozawa et al. 2019). The asexual morph was observed on alfalfa stems. Pycnidial conidiomata are dark brown to black, solitary or aggregated and erumpent on alfalfa stem surface. Pathogenicity test confirmed it as a clinical disease in the human eye (Ozawa et al. 2019).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe oculi* clustered in the *D. arecae* species complex.

Diaporthe oligocarpa Nitschke, Pyrenomyc. Germ. 2: 308 (1870)
Typification details – Holotype, BPI-Rehm; NY 02930300
Host – *Prunus spinosa* (Rosaceae)
Distribution – Europe (Germany)
Notes – This species was introduced with morphological data. There is no other record except the original description for this species (Nitschke 1870). Sequence data is not available for this species.

Diaporthe oligocarpoides Rehm, Hedwigia 26(3): 90 (1887)
Typification details – Holotype, Bommer & Rousseau s.n. (Rehm, Ascom., fasc. 18, 875)
Host – *Rosa canina* (Rosaceae)
Distribution – Europe (Belgium)
Notes – *Diaporthe oligocarpoides* was found from the dead branches of *Rosa canina* in Belgium. This species was introduced with morphological data, 6–8, gregarious perithecia, with a short neck, fusoid asci, 45–50 × 6–7 µm, elliptical to fusoid, 1-septate, subconstricted at the middle, 1–2-guttules in each cell, hyaline ascospores, 9–12 × 3 µm (Rehm 1887). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe oncostoma (Duby) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870)
Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 190 (1906)
≡ *Sphaeria oncostoma* Duby, Herb. Viv. Mycol., Cent.: no. 253 (1854)
Typification details – N/A
Distribution – Asia (China, India, Japan, South Korea), Europe (Austria, Belarus, Bulgaria, Denmark, France, Georgia, Germany, Greece, Hungary, Italy, Poland, Slovakia, Switzerland, United Kingdom), North America (Canada, USA: Illinois), Russia
Notes – *Diaporthe oncostoma* was recombined from *Sphaeria oncostoma*, species found from dead branches of *Robinia pseudoacacia*. The sexual morph was described in Fuckel (1870). The asexual morph was found and described by Gomes et al. (2013). Pathogenicity test confirmed that *D. oncostoma* is the cause of stem canker disease on *R. pseudoacacia* in Russia and Greece (Vajna 2002).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe oncostoma* clustered in the *D. oncostoma* species complex.

Diaporthe ontariensis Ellis & Everh., N. Amer. Pyren. (Newfield): 437 (1892)
Typification details – Holotype, NY, Dearness s.n.
Host – *Acer* sp. (Sapindaceae)
Distribution – North America (Canada)
Notes – *Diaporthe ontariensis* was introduced based on morphological data, which was found from dead branches of *Acer* sp. in Ontario, Canada. It has 2–6 perithecia in a stroma, with
erumpent, conical at first, then umbilicate, thick and stout ostiole, lanceolate asci, 65 × 12 µm, elliptical, 1-septate and constricted, obtuse, hyaline ascospores, 12–15 × 6 µm (Ellis & Everhart 1892). The asexual morph is undetermined. There is no other record except the original description for this species. Sequence data is not available for this species.

- Typification details – Holotype, DAOM 120179
- Host – *Viburnum opulus* (Adoxaceae)
- Distribution – North America (USA)
- Notes – *Diaporthe opuli* was found from the branches of *Viburnum opulus* in North Dakota, USA. This species was introduced with morphological data (Nitschke 1867). Sequence data is not available for this species.

- Typification details – Holotype, HMAS 246031; ex-type, CGMCC 3.17531 (LC 3166)
- Hosts – *Camellia sinensis*, *Camellia* sp. (Theaceae)
- Distribution – Asia (China)
- Notes – *Diaporthe oraccinii* was introduced by Gao et al. (2016), an endophytic fungal species found in the leaves of *Camellia sinensis* in Jiangxi, China. The morphological characters of its asexual morph were observed from fungal sporulated in PDA media, detailed descriptions and illustrations were provided by Gao et al. (2016). The sexual morph is undetermined. In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe oraccinii* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Diaporthe orientalis Sacc. & Speg., Michelia 1(no. 4): 391 (1878)
- Typification details – Holotype, PAD, Saccardo, Jan. 1877
- Host – *Morus alba* (Moraceae)
- Distribution – Europe (Italy, Portugal)
- Notes – *Diaporthe orientalis* was introduced by Saccardo (1878) from the dead branches of *Morus alba* in Italy. It is characterized by gregarious, globose perithecia, immersed in the wood, ostiolate, fusoid asci, obtuse at apex, 45–50 × 7 µm, aparaphysate, fusoid, 1-septate, constricted in the middle, hyaline, 4-guttules ascospores, 15–17 × 2–3 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe orixae Q.T. Lu & Z. Zhang, in Lu, Zhang, Sun, Tang, Lu & Zhang, Phytotaxa 544(1): 45 (2022)
- Typification details – Holotype, HKAS 121465
- Host – *Orixa japonica* (Rutaceae)
- Distribution – Asia (China)
- Notes – *Diaporthe orixae* was introduced by Lu et al. (2022). This an endophytic found on the healthy stems of *Orixa japonica* in Guizhou, China. The species produced pycnidial conidiomata, ostiolate, short necks, subcylindrical to cylindrical conidiophore, reduced to conidiogenous cells, with oblong to ellipsoid, hyaline, small guttulate at the top, middle and base of alpha conidia, beta and gamma conidia not observed. The detailed descriptions and illustrations of asexual morph for this species were given in Lu et al. (2022). The sexual morph is undetermined. Phylogenetic analysis based on ITS, *tef1-a*, *tub2*, *cal*, and *his3* sequence data indicated that *D. orixae* is closely related to *D. caryae* and *D. sackstonii*. However, *D. orixae* has bigger conidiomata and smaller alpha conidia than those in *D. caryae*, and has bigger conidiomata, smaller necks, smaller conidiogenous cells and smaller alpha conidia than those in *D. sackstonii*. Moreover, beta conidia not observed in *D. orixae*, but *D. caryae* produced beta conidia. Therefore *D. orixae* was introduced (Lu et al. 2022).
	Typification details – N/A
	Host – Orobanche sp. (Orobanchaceae)
	Distribution – Europe (Italy)
	Notes – Diaporthe orobanches was introduced from dead stem of Orobanche sp. in Italy. The morphology of species is gregarious perithecia, with long ostiole, clavate asci, 70 × 7 μm, oblong to ovoid, 1-septate, constricted at the middle, hyaline, 4-guttules ascospores, 10–12 × 3 μm (Berlese 1889). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe orthoceras (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)
	= Cerastoma orthoceras (Fr.) Quél., C. r. Assoc. Franç. Avancem. Sci. 11: 410 (1883)
	= Diaporthe orthoceras f. achilleae Sacc., Syll. fung. (Abellini) 3: 124 (1884)
	= Diaporthe orthoceras f. helianthi Sacc., Syll. fung. (Abellini) 1: 651 (1882)
	= Diaporthe orthoceras f. orthoceras (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)
	= Diaporthe orthoceras var. decidua Starbäck, Ark. Bot. 5(no. 7): 26 (1905)
	= Diaporthe orthoceras var. orthoceras (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)
	= Hendersonia senecionis Sacc., Syll. fung. (Abellini) 2: 159 (1883)
	= Phoma achilleae Sacc., Michelia 2(no. 8): 616 (1882)
	= Phomopsis achilleae (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 227 (1906)
	= Sphaeria orthoceras Fr., Elench. fung. (Greifswald) 2: 97 (1828)
	Typification details – N/A
	Host – Achillea millefolium (Asteraceae)
	Distribution – Europe (France, Germany, Great Britain, Italy)
	Notes – Diaporthe orthoceras was first reported as Sphaeria orthoceras by Fries (1828). This species was found on Achillea Millefolium in France, and it was introduced using morphological data. It is characterized by having loosely gregarious, subglobose or oblong, black pycnidia that are sometimes arranged in lines (Grove 1935). The spores are elliptic to fusoid, 2- or 3-guttules, 8–10 × 2.5–3 μm. Sequence data is not available for this species.

	Typification details – Holotype, HGUP 9165; ex-type, GUCC 9165
	Host – Litchi chinensis (Sapindaceae), Osmanthus fragrans (Oleaceae)
	Distribution – Asia (China)
	Notes – Diaporthe osmanthi was introduced by Long et al. (2019) from the leaves of Osmanthus fragrans in Guangxi, China. The morphology of this species was observed from fungal sporulated in PDA and was described and illustrated in the original publication (Long et al. 2019). The species produced alpha and beta conidia, while gamma conidia were not reported.
	In the phylogenetic tree of Norphanthoun et al. (2022, Fig. 1), Diaporthe osmanthi clustered in the D. arecae species complex.

Diaporthe ostryigena Ellis & Dearn., Fungi Columb.: no. 2019 (1905)
	= Chorostate ostryigena (Ellis & Dearn.) Sacc. & Trotter, Syll. fung. (Abellini) 22(1): 377 (1913)
	Typification details – Isotype, NY, MIC
	Host – Ostrya virginica (Betulaceae)
	Distribution – North America (Canada)
	Notes – Diaporthe ostryigena was introduced from dead trunks and branches of Ostrya virginica in Canada. It is characterized by globose to conical ascomata, erumpent ostiole, oblong to fusoid asci, 40–48 × 6–8 μm, oblong to cylindrical ascospores, with faintly nucleate, 13 × 3 μm
(Saccardo & Trotter 1913). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe otthii Nitschke, Mitt. naturf. Ges. Bern 654–683: 45 (1869)
- Typification details – N/A
- Hosts – *Ulmus campestris, U. glabra* (Ulmaceae)
- Distribution – Europe (Germany, Sweden, Switzerland)
- Notes – This species was introduced based on morphological data (Otth 1869). *Diaporthe otthii* is characterized by subglobose, black ascomata, subfusiform asci, oblong, constricted, hyaline, 2–5-guttules ascospores, 18 × 5–6 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe oudemansii Sacc., Syll. fung. (Abellini) 1: 611 (1882) = *Valsa aesculi* Oudem., Ned. kruidk. Archf, 2 sér. 1: 61 (1872)
- Typification details – N/A
- Host – *Aesculus hippocastanum* (Sapindaceae)
- Distribution – Europe (The Netherlands)
- Notes – *Diaporthe oudemansii* was introduced based on morphological data (Saccardo 1882a). The species was found on branches of *Aesculus hippocastanum* in Amsterdam, the Netherlands. It is characterized by oblong to fusoid asci, with short stipe, 40 × 8 µm, and cylindrical, curved on each side, 1-septate or more, hyaline, 1–2-guttules spores, 13 × 3–4 µm. Sequence data is not available for this species.

- Typification details – Holotype, ZJUD 93H; ex-type, ZJUD93 = CGMCC 3.17256 = ICMP 20659
- Hosts – *Citrus limon, Citrus* sp. (Rutaceae)
- Distribution – Asia (China)
- Notes – This species was introduced from the twig of *Citrus limon* in Yunnan, China. The morphology was described and illustrated in the original publication (Huang et al. 2015). This species is characterized by brown, subglobose or conical and walls parenchymatous pycnidia, cylindrical, hyaline, branched and tapered from base to top conidiophores, ovoid to clavate alpha conidia, abundant in culture, base sub-truncate, aseptate, smooth, hyaline, 2-guttules.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe ovalispora* clustered in the *D. sojae* species complex.

Diaporthe oxe R.R. Gomes, Glienke & Crous, Persoonia 31: 28 (2013)
- Typification details – Holotype, CBS H-21098; ex-type, CBS 133186 = LGMF 942 = CPC 20318
- Distribution – South America (Brazil, Uruguay)
- Notes – *Diaporthe oxe* was introduced by Gomes et al. (2013), as endophytic fungi from the petiole of *Maytenus ilicifolia* in Brazil. The morphological species was observed from fungal sporulated in PDA media, descriptions and illustrations of its asexual morph were provided by Gomes et al. (2013). The sexual morph is undetermined. Pathogenicity tests confirmed it as a pathogen causing cankers and necrosis disease (Sessa et al. 2018, Mazarotto et al. 2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe oxe* clustered in the *D. sojae* species complex.
Diaporthe oxyspora (Peck) Sacc., Syll. fung. (Abellini) 1: 627 (1882)

Typification details – Holotype, Peck s.n. (*Valsa oxyspora*)

Hosts – *Ilex opaca* (Aquifoliaceae), *Quercus* sp. (Fagaceae)

Distribution – North America (USA)

Notes – *Diaporthe oxyspora* was originally described as *Valsa oxyspora* by Peck (1876). The species was found on dead branches of *Quercus* sp. in New York, USA. The descriptions and illustrations of *V. oxyspora* were provided in the original publication. Saccardo (1882a) synonymized *V. oxyspora* under *D. oxyspora* based on morphological characters (see description in Peck 1876, Saccardo 1882a). This species has oblong to elliptical, 1-septate, 4-guttales ascospores, 15 long µm, with an appendage on both sides. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1882a). Sequence data is not available for this species.

Diaporthe pachystoma (Lév.) Sacc., Syll. fung. (Abellini) 1: 661 (1882)

Typification details – N/A

Host – *Lycopodium flabellata* (Syn. *Selaginella flabellata*) (Selaginellaceae)

Distribution – South America (Peru)

Notes – *Diaporthe pachystoma* was introduced by (Saccardo 1882a). It was found on *Lycopodium flabellata* in Peru. This species is characterized by innate black, globose or elongated stromata, elongate perithecia, immersed in black stroma, white inside, with elongated beaked ostioles, terete asci, elliptical, hyaline ascospores. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A

Host – *Prunus padus* (Rosaceae), *Taphrina padi* (Taphrinaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe padicola* was introduced based on sexual morphological data by Petrak (1916). This species has widely scattered, often 2–6 densely grouped, often completely immersed, globular sometimes a little scattered, membranaceous-coriaceous, black perithecium, 350–450 µm diam., submerged, little or hardly erupt ostioles, 8-spored, cylindrical to fusoid asci, on both sides a little attenuated, 36–45 × 5–8 µm, a paraphysate, straight to fusoid, a little narrow obtuse on both sides, 1–3-septate, not or very gently constricted, hyaline, 2–3-guttales ascospores, 9–11 × 2–3 µm (Petrak 1916). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, HKU (M) 4064

Hosts – *Archontophoenix alexandrae* (Arecaceae), *Areca* sp. (Arecaceae), *Trachycarpus fortunei* (Arecaceae)

Distribution – Asia (China, Hong Kong), Europe (Switzerland), Oceania (Australia)

Notes – Taylor & Hyde (2003) introduced this species as a palm fungus. There are no distinct morphological characters to distinguish this species from other *Diaporthe* species (Taylor & Hyde 2003). Sequence data is not available for this species.

≡ *Phomopsis palmicola f. arecae* Sacc., Annls mycol. 13(2): 128 (1915)

≡ *Phoma palmicola* G. Winter, Grevillea 15(no. 75): 92 (1887)

Typification details – Holotype, Ule, No. 256

Distribution – Asia (China, India, The Philippines) (the distribution of the first two countries is based on unpublished data in GenBank).

Notes – *Diaporthe palmicola* was introduced as a new combination of *Phoma palmicola* and *Phomopsis palmicola* by Rossman et al. (2016). However, Rossman et al. (2016) did not provide sequence data for this species. The species has scattered or gregarious perithecia, numerous, oblong to fusoid, straight, hyaline spores, with 2-large-guttules, 6–7 × 2.5 μm (Winter 1887). Sequence data of *Phomopsis palmicola* are available on NCBI (2023), but they have not been published yet. Therefore, the placement of this species is not confirmed.

Typification details – N/A

Host – *Euphorbia palustris* (Euphorbiaceae)

Distribution – Europe (Gaul)

Notes – This species was introduced using morphological data with has globose perithecia, short neck, 8-spored asci, 60–80 × 8 μm, hyaline, 4-guttules ascospores, 16–20 × 4 μm (Saccardo 1895). There are no other important morphological characters to distinguish it from other *Diaporthe* species. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, Spegazzini, Jan. 1881

Host – *Solanum glaucophyllum* (Syn. *Solanum glaucum*) (Solanaceae)

Distribution – South America (Argentina)

Notes – This species was introduced by using morphological data (Spegazzini 1881). It was found on rotten branches of *Solanum glaucum* in Buenos Aires, Argentina. Perithecia embedded in unaltered wood, spherical, slender membranous, with subcarbonaceous surface of stroma, 8-spored fusoid, upwards rather obtuse, rounded, beneath, tapering-subacuminate asci, 50 × 7–8 μm, aparaphysate, distichous, cylindrical to elliptical, subtrancate to rounded, middle one septum, constricted, 4-guttules, hyaline spores, 12–14 × 3 μm. The asexual morph is undetermined. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Spegazzini 1881). Sequence data is not available for this species.

Typification details – Holotype, MFLU 18-0006, ex-type, MFLUCC 17-0607 = KUMCC 17-0297

Host – *Pandanus* sp. (Pandanaceae)

Distribution – Asia (Thailand)

Notes – Tibpromma et al. (2018) introduced *Diaporthe pandanicola* with molecular data. It was found on *Pandanus* sp. in Thailand. Colonies on PDA are superficial, white, circular with an entire edge, smooth and raised on surface media, flossy and velvety and reverse yellow-white. Generative hyphae of this species are simple-septate, branched, sub-hyaline, cells with guttules and thin-walled. This species did not sporulate in culture. There is no important morphological character to distinguish it from other *Diaporthe* species (Tibpromma et al. 2018). Pathogenicity data is not available for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pandanicola* clustered in the *D. arecae* species complex.

Diaporthe parabolica Fuckel, Jb. nassau. Ver. Naturk. 23–24: 211 (1870)

Typification details – N/A

Host – *Prunus spinosa* (Rosaceae)
Distribution – Europe (Denmark)

Notes – *Diaporthe parabolica* was introduced using morphological data (Fuckel 1870). It has widely scattered and globular stromata, oblong asci, lanceolate to oblong, constricted in the middle, 1–3-septate, hyaline, 2–4-guttules ascospores (Fuckel 1870). The asexual morph is undetermined. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Fuckel 1870). Sequence data is not available for this species.

Diaporthe paranensis R.R. Gomes, Glienke & Crous, Persoonia 31: 28 (2013)

Typification details – Holotype, CBS H-21099; ex-type, CBS 133184 = LGMF 929 = CPC 20305

Host – *Maytenus ilicifolia* (Celastraceae), *Prunus persica* (Rosaceae)

Distribution – South America (Brazil)

Notes – This species was introduced by Gomes et al. (2013) as an endophytic fungus from *Maytenus ilicifolia* in Paraná, Brazil. Morphologically, these species produced ampulliform, semi-immersed, scattered, brown to black pycnidial conidiomata, outer surface smooth or covered in hyphae, with pre-dominantly pale-luteous to yellow and in some cases green-olivaceous conidial mass, filiform, branched, not tapering towards the apex, 2–3-septate conidiophores, subcylindrical, filiform conidiogenous cells, which rarely tapering towards the apex, produced fusoid to ellipsoidal, apex bluntly rounded, base obtuse to subtruncate, 2- to multi-guttules, hyaline alpha conidia, curved or hamate, slightly curved, hyaline beta conidia. In addition, there are no important morphological characters to distinguish it from other *Diaporthe* species (Gomes et al. 2013). The sexual morph is undetermined. No pathogenicity data is available for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe paranensis* clustered in the *D. sojae* species complex.

Diaporthe parapterocarpi Crous, in Crous et al., Persoonia 32: 229 (2014)

Typification details – Holotype, CBS H-21698; ex-type, CPC 22729 = CBS 137986

Host – *Pterocarpus brenanii* (Fabaceae)

Distribution – Africa (Zambia)

Notes – Crous et al. (2014) introduced *Diaporthe parapterocarpi* with molecular data. The species was found on *Pterocarpus brenanii* in Zambia. It has pycnidial conidiomata which are black, erumpent, and exuding yellow conidial droplets from the central ostiole, cylindrical, 1–2-septate, branched conidiophores, phallic, cylindrical, terminal and lateral with slight tape toward the apex conidiogenous cells, paraphyses not observed, fusoid to ellipsoidal, tapering towards both ends, straight, apex subobtuse and subtruncate base, aspetate, guttules, hyaline, smooth alpha conidia. The sexual morph is undetermined. There is no important morphological character to distinguish it from other *Diaporthe* species (Crous et al. 2014b).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe parapterocarpi* clustered in the *D. oncostoma* species complex.

Diaporthe pardalota (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870)

= *Diaporthe ceuthosporoides* (Berk.) Sacc., Syll. fung. (Abellini) 1: 646 (1882)

= *Diaporthe ceuthosporoides* f. *ceuthosporoides* (Berk.) Sacc., Syll. fung. (Abellini) 1: 646 (1882)

= *Diaporthe crassicollis* Nitschke, Pyrenomyc. Germ. 2: 258 (1870)

= *Diaporthe euphorbiae* Sacc., Syll. fung. (Abellini) 1: 665 (1882)

= *Diaporthe ilicina* Cooke, Grevillea 18(no. 88): 74 (1890)

= *Sphaeria euphorbiae* Cooke, Grevillea 3(no. 26): 67 (1874)
≡ *Sphaeria pardalota* Mont., Syll. gen. sp. crypt. (Paris): 235 (1856)

Typification details – N/A

Distribution – Africa (Morocco), Asia (Armenia, Indonesia, Hong Kong), Europe (Belgium, British, England, France, Germany, Italy, Poland, United Kingdom, Ukraine, North America (USA), Oceania (Australia), South America (Columbia)

Notes – This species was introduced using morphological data as micro fungus on dry stalks of *Convallaria multiloba*. Saccardo (1882a) provided a detailed description for this species with fusoid to clavate asci, 60–65 × 7–9 µm, fusoid, 1-septate, 4-guttules ascospores, 12–14 × 2–3 µm. There are no important morphological characters to distinguish it from other *Diaporthe* species (Fuckel 1870). Only LSU sequence is available for this species.

Typification details – Holotype, HMAS 248150; ex-type, CGMCC 3.19599 = PSCG 034

Host – *Pyrus bretschneideri* cv. Zaobaisu (Rosaceae)

Distribution – Asia (China)

Notes – This species was introduced based on multigene analysis and morphological characters. The asexual morph was observed on alfalfa stems with solitary or aggregated, erumpent, dark brown to black pycnidial conidiomata. The sexual morph is undetermined. There is no important morphological character to distinguish it from other *Diaporthe* species (Guo et al. 2020). A pathogenicity test confirmed that *D. parva* is a pathogenic fungus causing disease on branches of *Pyrus bretschneideri* (Guo et al. 2020).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe parva* clustered in the *D. oncostoma* species complex.

Diaporthe parvula Tschern., Trudy Severo-Kavkazskoi Assotsiatsii Nauchno-Issledovatel'skikh Institutov, no. 3: 57 (1929)

Typification details – Holotype, Specimen record 189169

Host – *Caragana arborescens* (Fabaceae)

Distribution – Europe (Caucasus)

Notes – *Diaporthe parvula* species was introduced using morphological data. The authors were unable to find the original description of the species. Sequence data is not available for this species.

Typification details – Holotype, VPRI 16058 (includes ex-type); isotype, BRIP 54847

Hosts – *Mangifera indica* (Anacardiaceae), *Persea americana* (Lauraceae)

Distribution – Asia (Malaysia), Oceania (Australia)

Notes – Tan et al. (2013) introduced *Diaporthe pascoeii* as a phylogenetically related species to *D. perseae*. *Diaporthe pascoeii* develops smaller alpha conidia compared to *D. perseae*. Morphologically, *D. perseae* is characterized by pycnidial conidiomata which are scattered, solitary or aggregated in groups on PDA, with conidial droplets exuded from ostioles, 1–2-septate, near the
base, hyaline, cylindrical, straight and unbranched conidiophores, with phialidic, terminal, cylindrical, tapered towards the apex and hyaline conidiogenous cells, scarce, cylindrical, rounded at the apex, slightly attenuated at the base, hyaline alpha conidia, beta conidia abundant, flexuous to lunate, hyaline, truncate at the base, narrowed towards the apex and often curved up to 90° in the apical part. There is no other important morphological character to distinguish it from other Diaporthe species (Tan et al. 2013). The pathogenicity was confirmed by Lim et al. (2019) as it produced stem-end rot symptoms on tested mango cv. Chok Anan, Waterlily, and Falan.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe pascoei clustered in the D. arecae species complex.

Diaporthe passiflorae Crous & L. Lombard, in Crous et al., Persoonia 28: 149 (2012)

Typification details – Holotype, CBS H-20956; ex-type, CPC 19184, 19183 = CBS 132527

Hosts – Actinidia sp. (Actinidiaceae), *Passiflora edulis* (Passifloraceae)

Distribution – Asia (China), South America (The Netherlands)

Notes – The species was first found as a pathogenic fungus that caused leaf spots on *Passiflora edulis* in Southern America, the Netherlands. *Diaporthe passiflorae* is characterized by branched, cylindrical, 2- or 3-septate, hyaline, smooth conidiophores, phialidic, cylindrical, terminal and lateral with slight taper apex and a visible periclinal thickening conidiogenous cells, ellipsoid, aseptate, hyaline, smooth alpha conidia, spindle-shaped, aseptate, hyaline, smooth beta conidia. There is no important morphological character to distinguish it from other Diaporthe species (Crous et al. 2016b). Li et al. (2019) confirmed the pathogenicity by observing its role in causing postharvest rot in kiwifruit. The pathogenicity was confirmed causing the postharvest rot in China (Li et al. 2019).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe passiflorae clustered in the D. sojae species complex.

Diaporthe passifloricola Crous & M.J. Wingf., in Crous et al., Persoonia 36: 395 (2016)

Typification details – Holotype, CBS H-22626; ex-type, CPC 27480 = CBS 141329

Hosts – *Citrus grandis* cv. Tomentosa (Rutaceae), *Passiflora foetida* (Passifloraceae)

Distribution – Asia (China, Malaysia)

Notes – *Diaporthe passifloricola* is phylogenetically closely related to *D. absenteum* (Crous et al. 2016b). This species develops conidiomata which are pycnidial, solitary, black, erumpent, globose, with short black necks, exuding creamy droplets from central ostioles, 2–3-septate, branched, cylindrical, straight to sinuous conidiophores, phialidic, cylindrical, terminal and lateral with a slight taper towards apex conidiogenous cells, 1–1.5 μm diam., with visible periclinal thickening. Alpha conidia are aseptate, hyaline, smooth, guttules, fusoid to ellipsoidal, tapering towards both ends, apex subobtuse, base sub truncate. Beta conidia are spindle-shaped, aseptate, smooth, hyaline, apex acutely rounded, base truncate, tapering from the lower third towards the apex and curved (adapted from Crous et al. 2016b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe passifloricola clustered in the D. sojae species complex.

Typification details – Holotype, RGM 2473; ex-type, CBS 145291

Host – *Aristotelia chilensis* (Elaeocarpaceae)

Distribution – South America (Chile)

Notes – *Diaporthe patagonica* was found from twigs with die-back symptoms of *Aristotelia chilensis* in Aysén, Chile (Zapata et al. 2020). This species produced eustromatic pycnidial conidiomata on pine needles on WA, with densely aggregated, cylindrical, hyaline conidiophores, which reduced to conidiogenous cell, phialidic, cylindrical, terminal and lateral conidiogenous cells, paraphyses not observed, fusoid to ellipsoidal, straight, aseptate, mostly 2-guttules, hyaline.
alpha conidia, and spindle shaped, aseptate, hyaline beta conidia, gamma conidia scarcely observed. Detailed descriptions and illustrations of the asexual morph for this species were provided by Zapata et al. (2020). The sexual morph was not observed.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe patagonica clustered in the D. rudis species complex.

Typification details – N/A
Host – *Verbena bonariensis* (Verbenaceae)
Distribution – South America (Argentina)
Notes – This species was introduced using morphological data (Tassi 1900). It was found from *Verbena bonariensis* in Argentina. Diaporthe patagonulae is characterized by sparse or common nesting in bark, globular perithecia, with short cylindrical conoid ostiole, 8-spored, oblong to subcylindrical at the apex and tapering at the base asci, 60–70 × 8–10 µm, ap paraphysate, oblong to ellipsoid, 2-celled, constricted at the middle, 4-guttules ascospores, 12–14 × 4–4.5 µm. Spermogonia characters were reported with oblong, hyaline, 2-guttules spores, 7–8 × 2–3 (Saccardo & Sydow 1902). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Tassi 1900). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe peckiana (Sacc.) Dearn. & House, N.Y. St. Mus. Bull. 197: 45 (1918)
= *Chorostate peckiana* Sacc., G. bot. ital., n.s. 23(2): 187 (1916)
Typification details – Holotype, Peck 45
Host – *Fraxinus americana* (Oleaceae)
Distribution – North America (USA)
Notes – *Diaporthe peckiana* was found on the dead bark of *Fraxinus americana* in New York, USA (Bargagli-Petrucci 1916). It is characterized by gregarious stromata, cortical, subcutaneous-erupting, depressed cushions, black circular circumscribed line, 0.7–1 mm diam., with 6–8 globose-depressed, circinate, perithecia in the stroma, 250–300 µm, black, barely existing ostiolate, with sinuous-parenchymatic context, olive-brown, fusoid, subsessile, 47–50 × 11–12 µm, ap paraphysate, 8-spored, subdistichous, apex obtuse, light obsolesely foraminulate, fusiform ascospores, pointed on both sides, hyaline, 12–13 × 3.5 µm (Saccardo 1916). The asexual morph was not reported. Sequence data is not available for this species.

Typification details – Holotype, HMAS 245776; ex-type, CGMCC 3.17532 (LC3353)
Hosts – *Camellia sinensis*, *Camellia* sp. (Theaceae)
Distribution – Asia (China)
Notes – Gao et al. (2016) introduced *D. penetriteum* as endophytic and pathogenic to *Camellia sinensis* in China. The species produced pycnidial conidiomata, subglobose, penetrated the media and aggregated in small groups, with cylindrical, branched, slightly curved conidiophores, or flexuous and reduced to conidiogenous cells, cylindrical, hyaline, straight tapered towards the apex conidiogenous cells, with ellipsoid or fusiform, aseptate, 2-guttules and hyaline alpha conidia, filamentous, hyaline, eguttules, smooth and straight, and sometimes hamate beta conidia. There is no important morphological character to distinguish it from other *Diaporthe* species (Gao et al. 2016). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe penetriteum clustered in the D. eres species complex (= D. alnea species complex).

= *Calospora pennsylvanica* (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 2: 232 (1883)
= Cryptospora pennsylvanica (Berk. & M.A. Curtis) Ellis & Everh., N. Amer. Pyren. (Newfield): 526 (1892)
≡ Valsa pennsylvanica Berk. & M.A. Curtis, N. Amer. Fung.: no. 865 (1875)

Typification details – N/A

Hosts – Prunus pensylvanica (Rosaceae), Prunus serotina (Rosaceae), Prunus sp. (Rosaceae)

Distribution – North America (Canada, USA)

Notes – Diaporthe pennsylvanica was found on branch of Prunus pensylvanica (Cerasus pennsylvanica) (Saccardo 1883, Ellis et al. 1892). It is characterized by perithecia covered with stroma, oblong, narrow spores, with 3-septate curved, 25 µm long. There is no other record except the original description for this species in Saccardo (1883) and Index of fungi (1969). Sequence data is not available for this species.

Diaporthe perjuncta Niessl, Hedwigia 15: 153 (1876)

Typification details – Holotype, Rabenhorst s.n.; ex-epitype CBS 109745

Hosts – Carlina corymbose, Carlina sp., C. vulgaris (Asteraceae)

Distribution – Europe (Italy, Spain, United Kingdom)

Notes – Diaporthe perjuncta was introduced using morphological data. This species has 8-spored, fusoid asci, 40–50 × 7–8 µm, distichous, oblong, constricted at the middle, hyaline, 4-guttules ascospores, 12 × 3–4 µm. The asexual morph produced conidiomata which are nestling under the epidermis, with fusoid, curved, hyaline, 2-guttules alpha conidia, 6–8 × 3 µm, and filiform beta conidia, up to 32 × 1 µm, hooked at the apex (Saccardo 1882a). Detailed descriptions are available in Saccardo (1875, 1882a). However, there are no other important morphological characters to distinguish it from other Diaporthe species. Sequence data is not available for this species.

Typification details – N/A

Hosts – Carlina corymbose, Carlina sp., C. vulgaris (Asteraceae)

Distribution – Europe (Italy, Spain, United Kingdom)

Notes – Diaporthe perexigua was introduced using morphological data. This species has 8-spored, fusoid asci, 40–50 × 7–8 µm, distichous, oblong, constricted at the middle, hyaline, 4-guttules ascospores, 12 × 3–4 µm. The asexual morph produced conidiomata which are nestling under the epidermis, with fusoid, curved, hyaline, 2-guttules alpha conidia, 6–8 × 3 µm, and filiform beta conidia, up to 32 × 1 µm, hooked at the apex (Saccardo 1882a). Detailed descriptions are available in Saccardo (1875, 1882a). However, there are no other important morphological characters to distinguish it from other Diaporthe species. Sequence data is not available for this species.

Diaporthe perjuncta Niessl, Hedwigia 15: 153 (1876)

Typification details – Holotype, Rabenhorst s.n.; ex-epitype CBS 109745

Hosts – Ulmus campestris, U. glabra, Ulmus sp. (Ulmaceae), Vitis sp., Vitis vinifera (Vitaceae)

Distribution – Africa (South Africa), Europe (Austria, Belgium, Czech Republic, Denmark, Germany, Poland, Portugal, Sweden), Oceania (Australia), Russia

Notes – Niessl (1876b) introduced a new species, Diaporthe conjuncta Niessl. However, Niessl (1876c) mentioned that D. conjuncta Niessl is a homonym of D. conjuncta established by Fuckel (1870). Thus, Niessl (1876c) changed the name of D. conjuncta Niessl to D. perjuncta. van Niekerk et al. (2005) also referred to D. conjuncta Niessl 1876 as a synonym of D. perjuncta. The species has semi-immersed stroma, 5–12 gregarious perithecia in a stroma, ostiolate, lanceolate to clavate, subsessile asci, 64–80 × 8–9 µm, clavate to fusoid, straight, often unequal, 1-(3)-septate, scarcely constricted in the middle, hyaline ascospores, 13–15 × 4 µm (Saccardo 1882a). There are no other important morphological characters to distinguish it from other Diaporthe species (Niessl 1876c, van Niekerk et al. 2005). Diaporthe perjuncta was considered as an important pathogen of grapevines worldwide (Molelek et al. 2003). Although, D. perjuncta has been associated with Phomopsis cane and leaf spot disease of grapevine in Australia, Rawsleys et al. (2006) reported that D. perjuncta did not adversely affect grapevine productivity and cannot be regarded as a pathogen of grapevine. Further studies are required to investigate its pathogenic roles.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe perjuncta clustered with D. acerina with 100% bootstrap support. Thus, we accept it as a singleton species in Diaporthe.

Diaporthe perniciosa Marchal & É.J. Marchal, Bull. Soc. R. Bot. Belg. 54: 117 (1921)

Typification details – Holotype, Pl. I, figs 4, 6 & 10 and Pl. II, fig. 2 (loc. cit.)

Hosts – Actinidia deliciosa (Actinidiaceae), Diospyros kaki (Ebenaceae), Malus domestica,
M. pumila, M. pumila var. dulcissima, M. sylvestris (Rosaceae), Prunus cerasus, P. domestica, P. mahaleb, Prunus sp. (Rosaceae), Pyrus communis (Rosaceae), Vitis sp., V. vinifera (Vitaceae)

Distribution – Asia (Korea), Europe (Belgium, Bulgaria, Cyprus, United Kingdom), North America (Canada, USA: Arkansas), Oceania (New Zealand)

Notes – Diaporthe perniciosa was introduced by Marchal (1921) based on morphological data. The species has sparse or densely clustered, deeply immersed globular or globular-depressed perithecia, with black and cylindrical ostiole, 8-spored, apex subrounded, below short stipe asci, 50–64 × 5–5.7 µm, oblong, obtuse, 1-septate, generally constricted, 4-guttules ascospores, 11.5–14 × 3.2–4.2 µm. Other than these there are no important morphological characteristics to distinguish it from other Diaporthe species (Marchal 1921). The asexual morph is undetermined.

In the ITS phylogeny of Norphanphoun et al. (2022, Fig. 3), this species grouped with D. asheicola (CBS 136967) and other strains of D. eres.

Typification details – Holotype, CBS 151.73
Hosts – Citrus grandis cv. Tomentosa (Rutaceae), Mangifera indica (Anacardiaceae), Persea gratissima (Lauraceae)
Distribution – Asia (China, Malaysia), Europe (The Netherlands, Ukraine)
Notes – This species produced alpha, beta and gamma conidia on malt extract agar (MEA). A detailed description was given by Gomes et al. (2013). There is no important morphological character to distinguish it from other Diaporthe species (Gomes et al. 2013).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe perseae clustered in the D. arecae species complex. The type strain of this species (CBS 151.73) and another representative strain (BPPCA257) did not cluster together.

Typification details – Holotype, MFLU 16-0906; ex-type, MFLUCC 16-0105 = CGMCC3.17465
Host – Prunus persica (Rosaceae)
Distribution – Asia (China)
Notes – The species was found on Prunus persica in Hubei, China. Dissanayake et al. (2017c) introduced Diaporthe pescicola based on its presence of beta conidia differs from D. arecae, D. pterocarpicola and D. pseudophoenicicola. There are no important morphological characteristics to distinguish it from other Diaporthe species. Description and illustration of asexual morph characters were provided by Dissanayake et al. (2017c). The sexual morph is undetermined. The pathogenicity of this species causing peach dieback was confirmed by Dissanayake et al. (2017c).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe pescicola clustered in the D. arecae species complex.

Diaporthe personata (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 612 (1882)
≡ Valsa personata Cooke & Ellis, Grevillea 7(no. 41): 9 (1878)
Typification details – Holotype, Ellis 2918
Host – Robinia pseudoacacia (Fabaceae)
Distribution – North America (USA)
Notes – Diaporthe personata was reported on branches of Robinia pseudoacacia (Saccardo 1882a). The species is characterized by immersed, black perithecia, clavate asci, with lanceolate ascospores, uniseptate, 4-guttules, 47–50 × 11–12 µm. Although it is stated that the species is possibly the same as D. oncostoma, which commonly found on Robinia, we could not find any published data to confirm this synonymization (Saccardo 1882a, Wehmeyer 1933b). Sequence data
is not available for this species. Therefore, we treat both species as distinct until further information becomes available.

Diaporthe petiolorum Sacc. & Speg., Michelia 1(no. 4): 388 (1878)
 Typification details – Holotype, PAD, Saccardo, Jun. 1877
 Host – *Catalpa syringifolia* (Bignoniaceae)
 Distribution – Europe (Italy)
 Notes – This species was introduced using morphological data (Saccardo 1878). It was found on petioles of *Catalpa syringifolia* in Italy. The species has oblong black tapestry stroma, embedded, gregarious, globular perithecia, with a cylindrical ostiole perforating and slightly exposed, 8-spored, fusoid asci, 50–55 × 6–7 µm, a paraphysate, oblong, constricted, 1-septate, hyaline, 2–4-guttules spores, 12–14 × 3–3.5 µm. There are no other important morphological characteristics to distinguish it from other *Diaporthe* species (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe petrakiana Sacc., Annls mycol. 12(3): 290 (1914).
 Typification details – Holotype, Petrak 35 (1913)
 Host – *Acer pseudoplatanus* (Sapindaceae)
 Distribution – Europe (Germany)
 Notes – *Diaporthe petrakiana* was introduced by Saccardo (1914). It was found on *Acer pseudoplatanus* in Germany. This species was introduced using morphological data of sexual morph, with gregarious perithecia, erumpent and short ostiole, papillate, 8-spored, fusoid, sessile asci, 45–50 × 7–7.5 µm, a paraphysate, fusoid ascospores, 11.5–12.5 × 3.5–4 µm (Saccardo 1914). There are no important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1914). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe phaceliae Cooke & Harkn., Grevillea 9(no. 51): 86 (1881)
 Typification details – Holotype, Harkness 1347
 Host – *Phacelia* sp. (Boraginaceae)
 Distribution – North America (USA: California)
 Notes – *Diaporthe phaceliae* was introduced using morphological data (Cooke & Harkness 1881). It was found from *Phacelia* sp. in California, USA, and has subglobose and immersed stroma, cylindrical and elongated ostioles, clavate and sessile asci, with straight, sublanceolate, 1-septate, 4-nucleated spores, 15 × 3 µm. There are no other important morphological characteristics to distinguish it from other *Diaporthe* species (Cooke & Harkness 1881). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe phaseolorum (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)
 = *Chorostate batatas* (Harter & E.C. Field) Sacc. [as ‘*batatae*’], in Trotter, Syll. fung. (Abellini) 24(2): 749 (1928)
 = *Diaporthe batatas* Harter & E.C. Field, Phytopathology 2: 121, 124 (1912)
 = *Diaporthe phaseolorum* var. *caulivora* Athow & Caldwell, Phytopathology 14: 323 (1954)
 = *Diaporthe phaseolorum* var. *phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)
Diaporthe phillipsii S. Hilário, L. Santos & A. Alves, Mycologia 112 (2): 301 (2020)

Typification details – Holotype, AVE-F-2; ex-type, MUM 19.28
Host – Vaccinium corymbosum (Ericaceae)
Distribution – Europe (Portugal)

Notes – This species was introduced with an asexual morph. It was found from Vaccinium corymbosum in Portugal. There is no important morphological character to distinguish it from other Diaporthe species (Hilário et al. 2020). The sexual morph is undetermined. The pathogenicity was done by Hilário et al. (2020), confirming its role as a pathogenic fungus causing dieback disease in V. corymbosum.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe phillipsii clustered in the D. oncostoma species complex.
Diaporthe phillyreae Cooke, Grevillea 7(no. 43): 81 (1879)

Typification details – N/A
Host – *Phyllyrea* sp. (Oleaceae)
Distribution – Europe (England)

Notes – This species was found from *Phyllyrea* sp. in England and introduced using morphological data by Cooke & Plowright (1879). It develops definite elliptical or irregular discoloured stromata, scattered perithecia, slender ostiole which pierces the cuticle, clavate asci, 4-nucleate, then 1-septate ascospores. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Cooke & Plowright 1879). The asexual morph is undetermined. Sequence data is not available for this species.

≡ *Phomopsis phoenicicola* Traverso & Spessa, Bolm Soc. broteriana, Coimbra, sér. 1 25: 177 (1910)

Typification details – Isotype, CBS H-7808; ex-isotype, CBS 161.64
Host – *Areca catechu* (Arecaceae)
Distribution – Asia (India)

Notes – This species was introduced with sequences data in Udayanga et al. (2012b). The description and illustration of *Diaporthe phoenicicola* was reported by Lai et al. (2022) as the first report of *D. phoenicicola* causing leaf spots on blueberry (*Vaccinium virgatum*) in China.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe phoenicicola* clustered in the *D. arecae* species complex.

Typification details – N/A
Host – *Phoenix dactylifera* (Arecaceae)
Distribution – Africa (Tunisia), Europe

Notes – This species was introduced using morphological data (Patouillard 1897b).

Diaporthe phoenicis is characterized by broad stroma, black and cylindrical ostioles, fusoid asci, 60–70 × 8–10 µm, aparaphysate, fusiform, 1-septate, not constricted, 4-guttules, hyaline ascospores, 13–15 × 3–4 µm (Patouillard 1897b). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Patouillard 1897b). Sequence data is not available for this species.

Diaporthe pholeodes (Mont.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

Typification details – N/A
Host – *Cirsium palustre* (Asteraceae)
Distribution – Europe (Italy)

Notes – This species was introduced using morphological data and no important morphological characters to distinguish it from other *Diaporthe* species (Fuckel 1870). The species has immersed globose perithecia, nestling in the wood, with a short subconical ostiole, fusiform to subclavate asci, and cymbiform, 4-nucleated spores. Sequence data is not available for this species.

Typification details – Holotype, SCHM, Cheng 3680
Host – *Phyllanthus emblica* (Phyllanthaceae)
Distribution – Asia (China)
Notes – Gao et al. (2015) introduced this species as a new combination for *Phomopsis phyllanthicola*. It was found from *Phyllanthus emblica* in Fujian, China. There is no important morphological character to distinguish it from other *Diaporthe* species (Gao et al. 2015).

Only the ITS sequences of *D. phyllanthicola* are available and in the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), *D. phyllanthicola* clustered in the *D. arecae* species complex.

Diaporthe picea (Pers.) Sacc., Syll. fung. (Abellini) 1: 648 (1882)

= *Diaporthe picea* var. *linariæ* Pat., in Pitard, Explor. Scient. Maroc, Botan.: 149 (1913)

= *Phoma picea* (Pers.) Sacc., Michelia 2(no. 6): 4 (1880)

= *Phoma picea* var. *chenopodi* P. Karst. & Har., Revue mycol., Toulouse 12(no. 47): 130 (1890)

= *Phomopsis picea* f. *obiones* Grove, British Stem- and Leaf-Fungi (Coelomycetes) (Cambridge) 1: 192 (1935)

Typification details – N/A

Host – *Acanthus mollis* (Acanthaceae), *Chenopodium* sp. (Amaranthaceae), *Halimione portulacoides* (= *Obione portulacoides*) (Amaranthaceae), *Linaria* sp. (Plantaginaceae),

Distribution – Africa (Algeria, Great Britain, Morocco), North America (USA)

Notes – *Diaporthe picea* was reported by Saccardo (1882a). This species was found on *Acanthus mollis* in Algeria, and was introduced using morphological data. It is characterized by subglobose, semi-immersed ascomata, clavate asci with 1–3-septate ascospores (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pimeleae Petr., Sydowia 9(1–6): 560 (1955)

Typification details – Holotype, Gauba, 1 Apr. 1955

Host – *Pimelea ligustrina* (Thymelaeaceae)

Distribution – Oceania (Australia)

Notes – This species was introduced using morphological data Petrak (1955). It was found from *Pimelea ligustrina* in New South Wales, Australia. Stromata are maculiform, minute, irregular, and loosely scattered, rarely and generally joining together only larger, stromatica, variously twisted, limited in bark and wood. Perithecia are loosely distributed or subdensely distributed, nesting in the bark or even more or less embossed in wood, globose or broadly ellipsoid and more or less depressed. Short ostiole which is often slightly enlarged at the apex, and not breaking out prominently. Asci are numerous, 8-spored, and rarely 4–6-spored, fusiform, more or less tapering and obtuse on each side, 40–50 × 6–7 μm. Ascospores are incompletely distichous, oblong to fusoid, attenuate on both sides, rarely unequal, middle septate, not or very smoothly compacted, 7–11 × 3–5 μm. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Petrak 1955). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pimpinellae Abeywickrama, Camporesi, Dissanayake & K.D. Hyde, Fungal Diversity 104: 77 (2020)

Typification details – Holotype, MFLU 19-0563; ex-type, JZB 320131

Host – *Pimpinella peregrina* (Apiaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe pimpinellae* was introduced by Yuan et al. (2020). The species was found as saprobic on dead aerial stems of *Pimpinella peregrina* in Forlì-Cesena, Italy in Yuan et al. (2020). Morphological characters comprise superficial, solitary, scattered on host, oval to round, black conidiomata, with densely aggregated, cylindrical, aseptate, straight or sinuous, terminal
conidiophores, phialidic, terminal and lateral, cylindrical conidiogenous cells, produced fusiform or oval, 1–2 guttules per cell, hyaline alpha conidia, while beta conidia observed on PDA. Detailed descriptions and illustrations of the asexual morph for this species are available in Yuan et al. (2020). The sexual morph is not observed.

Diaporthe pinastri Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. II: 121 (1901)
- Typification details – Feltgen, Oct. 1897
- Host – *Pinus sylvestris* (Pinaceae)
- Distribution – Europe (Luxembourg)
- Notes – There are no important morphological characters to distinguish it from other *Diaporthe* species. It is characterized by ovoid to elliptic asci, 33–36 × 12–14 μm, and fusiform, straight or curved, 1-septate, constricted at the septum, 2–4-guttules ascospores (Saccardo & Saccardo 1905). A detailed description of this species is available in Yuan et al. (2020). The sexual morph is not observed.

- Typification details – N/A
- Host – *Pinus sylvestris* (Pinaceae)
- Distribution – Europe (Hungary)
- Notes – *Diaporthe pinicola* was found on *Pinus sylvestris* in Hungary. It was introduced using morphological data and no important morphological characters to distinguish it from other *Diaporthe* species. The species has stromata which contained few perithecia, developed under and in the upper layer of the wood, with a short cylindrical ostiole, 8-spored, fusiform, sessile asci, and cylindrical ascospores, 12–14 μm (Hazslinszky 1893). Sequence data is not available for this species.

Diaporthe pinophylla (Plowr. & W. Phillips) Sacc., Syll. fung. (Abellini) 1: 646 (1882)
 = *Gnomonia pinophylla* (W. Phillips & Plowright) Cooke & Plowr., Grevillea 7(no. 42): 88 (1878)
 = *Sphaeria pinophylla* W. Phillips & Plowright, Grevillea 4(no. 31): 124 (1876)
- Typification details – Holotype, K(M), anon., May 1875
- Host – *Pinus sylvestris* (Pinaceae)
- Distribution – Europe (Great Britain)
- Notes – This species was introduced using morphological data (Saccardo 1882a). It was found on *Pinus sylvestris* in Great Britain. It is characterized by sparse perithecia, sometimes aggregated, stromatica, profusion, black, dug in, ostioles elongate, abruptly truncate at the apex, fusoid asci, 25 long μm, biseriate, lanceolate, acute, 1-septate, hyaline ascospores, 17–18 × 5 μm. The asexual morph is undetermined. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Saccardo 1882a). Sequence data is not available for this species.

- Typification details – N/A
- Hosts – *Picea abies* (Pinaceae), *Pseudotsuga menziesii* (Pinaceae)
- Distribution – Europe (Denmark), North America (USA: Oregon)
- Notes – This species was introduced using morphological data of sexual morph and no important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1875). *Diaporthe pithya* is characterized by oblong to fusoid asci, 50–55 × 6–7 μm, and fusoid, distichous, slightly constricted at the middle, 4-guttules, hyaline ascospores, 10–12 × 3–4 μm (Saccardo 1875). The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe placoides Ellis & Everh., N. Amer. Pyren. (Newfield): 451 (1892)

Typification details – Holotype, NY, Ellis & Everhart s.n.
Host – *Lactuca canadensis* (Asteraceae)
Distribution – North America (USA)

Notes – This species was introduced based on morphological data by Ellis & Everhart (1892). It was found from *Lactuca canadensis* in New Jersey, USA. Stromata are elliptical, or about that, black on the surface, white within, but limited by a distinct black line, gregarious, at first covered by the epidermis and not prominent, but when the epidermis falls away, standing out like little black, elliptical shields or disks. Perithecia are often 1–2 in a stroma, very small, buried in the surface of the stroma, with the papilliform or papilliform ostiole projecting. Asci are 8-spored, oblong to fusoid, 35–40 × 6 μm, ap paraphysate. Spores are biseriate, narrow-elliptical 3–4 nucleate, hyaline, not constricted, 7–8 × 3.5 μm. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Ellis & Everhart 1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe plantaginis Tassi, Bulletin Labor. Orto Bot. de R. Univ. Siena 3: 120 (1900)

Typification details – N/A
Host – *Plantaginis* sp. (Plantaginaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe plantaginis* was introduced by Tassi (1900) based on morphological data of sexual morph. This species was found from dead branches of *Plantaginis* sp. in Italy. It has discrete stromata, with 5–6 perithecia in a stroma, 8-spored, subcylindrical, sessile, 2-foveolate asci, paraphysate, 40–50 × 7–8 μm, oblong, 1-septate, gently constricted, hyaline, 4-guttules ascospores, 12–13 × 4 μm. Spermogonia state has scattered perithecia, with ovate to ellipsoid, 2-guttules, hyaline spermatia, 5–6 × 2 μm (Saccardo & Sydow 1902). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Tassi 1900). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 60353a
Host – *Persea americana* (Lauraceae)
Distribution – Oceania (Australia)

Notes – *Diaporthe platzzii* was introduced by Tan & Shivas (2022) based on molecular data. It was found from roots of *Persea americana* in Norfolk Island, Australia. In phylogenetic tree based on ITS, tub2, and tef1-α sequences, *D. platzzii* is closely related to *D. hsinchuensis* with high bootstrap support (Tan & Shivas 2022).

Typification details – Holotype, HMAS 247084; ex-type, CGMCC 3.18281 = LC 6155
Hosts – *Olea europaea* (Oleaceae), *Podocarpus macrophyllus* (Podocarpaceae)
Distribution – Asia (China, Japan), Europe (Italy)

Notes – *Diaporthe podocarpi-macrophylli* was introduced as phylogenetically closely related to *D. pseudophoenicicolc*. Morphologically, *D. podocarpi-macrophylli* differs from other *Diaporthe* species occurring on the host genera *Podocarpus macrophyllus* and *Olea europaea*, (*D. cinerascens* and *Phomopsis podocarpri*) in its wider and shorter alpha conidia and the presence of beta conidia (Chang et al. 2005b, Gomes et al. 2013; https://nt.ars-grin.gov/fungaldatabases/). It develops pycnidial conidiomata which are solitary or aggregated, deeply embedded in the PDA, erumpent, dark brown to black and yellowish translucent conidial drops exuding from the ostioles. Alpha and beta conidia characters were observed. There is no other important morphological character to distinguish it from other *Diaporthe* species (Gao et al. 2017). The sexual morph is undetermined. Pathogenicity data is not available for this species.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe podocarpomacrophylli* clustered in the *D. arecae* species complex.

- Typification details – Holotype, URM 91976; ex-type, URM 7932
- Host – *Poinciana pyramidalis* (Fabaceae)
- Distribution – South America (Brazil)
- Notes – Crous et al. (2018a) introduced *Diaporthe poincianellae* as a closely related species to *D. velutina* based on the size of pycnidia, conidiophores, alpha conidia and the presence of beta conidia. *Diaporthe poincianellae* also differs from *D. cissampeli* by the size of its pycnidia, phialidic conidiogenous cells and subcylindrical alpha conidia (Crous et al. 2018a). The sexual morph of *D. poincianellae* is undetermined. Pathogenicity data is not available for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe poincianellae* clustered in the *D. oncostoma* species complex.

Diaporthe polygoni Rehm, Annls mycol. 6(4): 321 (1908)
- Typification details – Holotype, Sydow s.n
- Host – *Polygonum aviculare* (Polygonaceae)
- Distribution – Europe (Germany)
- Notes – *Diaporthe polygoni* was introduced by Rehm (1908) based on morphological data of its sexual morph. The species was found from *Polygonum aviculare* in Germany. It is characterized by stromata, scattered, globose perithecia, piercing the periderm, cylindrical, very thin, straight ostiole, 8-spored, elliptical asci, 35–45 × 9–10 µm, a paraphysate, oblong, obtuse, straight, 2-celled, constricted at the middle, 2-guttules in each cell, finally 3-septate ascospores, 7–10 × 2.5–3 µm. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Rehm 1908). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – Holotype, LPS, Spegazzini, Oct. 1894
- Host – *Polygonum bonaerense* (Polygonaceae)
- Distribution – South America (Argentina)
- Notes – *Diaporthe polygonicola* was introduced using morphological data by Spegazzini (1898). The species was found from *Polygonum bonaerense* in Buenos Aires, Argentina and is characterized by stromata, scattered often loosely gregarious, lenticular, globular perithecia, with a rigid ostiole, somewhat exposed, 8-spored, fusoid asci, 50 × 8 µm, ellipsoidal to cylindrical, straight, slightly curved, on both sides acute, 2-guttules ascospores, 14–15 × 3.5 µm. There are no other important morphological characteristics to distinguish it from other *Diaporthe* species (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pometiae S.T. Huang, J.W. Xia, W.X. Sun & X.G. Zhang, in Huang, Xia, Zhang & Sun, MycoKeys 78: 70 (2021)
- Typification details – Holotype, HSAUP194.72; ex-type, SAUCC194.72
- Host – *Heliconia metallica* (Musaceae), *Persea americana* (Lauraceae), *Pometia pinnata* (Sapindaceae)
- Distribution – Asia (China)
- Notes – *Diaporthe pometiae* is associated with leaf spots on *Pometia pinnata* found in Yunnan, China (Huang et al. 2021a). The species produced subglobose to globose, black, pycnidial conidiomata, coated with white hyphae, produced creamy droplets extruding through the ostioles, with cylindrical-clavate, septate, branched, hyaline conidiophores, cylindrical, phialidic, multi-guttules conidiogenous cells, with ellipsoidal to oblong ellipsoidal, aseptate, 2–4-guttules, hyaline
alpha conidia, and filiform, aseptate, hyaline beta conidia (Huang et al. 2021a). Phylogenetically, *D. pometiae* formed a distinct clade sister to *D. biconispora*. Moreover, *D. pometiae* can be distinguished from *D. biconispora* by having shorter alpha conidia and the production of beta conidia (Huang et al. 2021a).

Typification details – Holotype, CBS H-23474; ex-type, CBS 144228 = CPC 34247
Host – *Camellia sinensis* (Theaceae)
Distribution – Europe (Portugal)

Notes – This species was introduced with an asexual morph associated with *Camellia sinensis* leaf lesions in Portugal (Guarnaccia & Crous 2018). It has pycnidial conidiomata solitary or aggregated in cultures and yellowish translucent to cream conidial drops exuded from ostioles, paraphyses not observed, aseptate, fusoid, hyaline, 1–2-guttuls and acute at both ends alpha conidia. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Guarnaccia & Crous 2018). Therefore, *D. portugallica* was introduced with molecular data. Pathogenicity data is not available for this species, but this species was isolated from disease leaves. Lesions on leaves are small, circular or irregular, brownish to purple, initially appearing on fully developed leaves, gradually enlarging, coalescing and becoming dark purple.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe portugallica* clustered in the *D. oncostoma* species complex.

Diaporthe pratensis Sacc. & Speg., Michelia 1(no. 4): 389 (1878)

Typification details – Holotype, PAD, Saccardo, May 1877
Host – *Medicago lupulina* (Fabaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe pratensis* was introduced by Saccardo (1878) based on morphological data. The species was found on *Medicago lupulina* in Italy. It is characterized by loosely clustered, immersed in wood, globular perithecia, with short emerging, cylindrical ostioles, 8-spored, clavate to fusoid asci, with a narrower apex, 35–40 × 6–7 µm, a paraphysate, oblique monostices, ovate to oblong, constricted 1-septate, both sides obtuse, 4-guttules, hyaline ascospores, 14–15 × 3–4 µm. There are no important morphological characteristics to distinguish it from other *Diaporthe* species (Saccardo1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe prenanthicola G.F. Atk., Annls mycol. 7(6): 531 (1909)

Typification details – Holotype, Atkinson s.n.
Host – *Prenanthis* sp. (insect)
Distribution – North America (USA)

Notes – *Diaporthe prenanthicola* was introduced by Rehm (1909). It was found on *Prenanthis* in New York, USA. This species was introduced using morphological data and no important morphological characters to distinguish it from other *Diaporthe* species. Sequence data is not available for this species.

Diaporthe priva Sacc. & Roum., Revue mycol., Toulouse 6(no. 21): 27 (1884)

Typification details – N/A
Host – *Fraxinus ornus* (Oleaceae)
Distribution – N/A

Notes – *Diaporthe priva* was introduced using morphological data (Saccardo & Roumeguère 1884). It has black scattered stromata, immersed, globose and bursting out, but barely extant perithecia, 8-spored, fusoid ascis, 65 × 8 µm, a paraphysate, fusoid, tapering obtuse on both sides, middle constricted, 1-septate, 4-guttules, hyaline ascospores, 16–18 × 4.5–5 µm. There are no
important morphological characteristics to distinguish it from other Diaporthe species (Saccardo & Roumeguère 1884). The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – Holotype, NY, Dearness s.n.; NY, Holway s.n.

 Hosts – *Prunus angustifolia*, *P. hortulana*, *P. munsoniana*, *P. serotina*, *P. virginiana* and *Prunus* sp. (Rosaceae)

 Distribution – North America (USA: Iowa, Massachusetts, Michigan, New York)

 Notes – *Diaporthe pruni* was introduced based on morphological data (Ellis & Everhart 1893c). The species was first found on *Prunus virginiana* in Iowa, USA. Stromata are cortical, orbicular or elliptical, convex, and formed from the slightly altered and somewhat paler substance of the bark. Perithecia are circinate, ovate-globose, black, semi-immersed, contracted above into short necks with their hemispheric conical ostiole. Ostiole is erumpent in a whitish disk which is soon obliterated. Asci are clavate and fusoid, 60–65 × 8–10 µm. Spores are biseriate, oblong to fusoid, hyaline, slightly constricted in the middle, 15–20 × 3.5–5 µm, with a short, cornute appendage at each end and straight. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Ellis & Everhart 1893c). The asexual morph is undetermined. Sequence data is not available for this species.

 = *Engizostoma prunicola* (Peck) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 475 (1898)

 Typification details – Holotype, Peck s.n.

 Hosts – *Prunus americana*, *P. divaricata*, *P. pensylvanica*, *P. serotina*, *P. virginiana* and *Prunus* sp. (Rosaceae)

 Distribution – Europe (Ukraine), North America (Canada, USA: Iowa, Nebraska, New York)

 Notes – *Diaporthe prunicola* was introduced as a new combination for *Valsa prunicola*. This species has pustules scattered, slightly prominent, piercing the epidermis or rupturing it transversely, with 10–12 perithecia, sunk to the wood, or nestling in the inner bark, and entire, crowded, ostioles, fusiform to subcylindrical asci, crowded, cylindrical, straight or slightly curved, 4-nucleated, hyaline ascospores (Peck 1880). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Wehmeyer 1933a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pseudoalnea N. Jiang, in Jiang, Voglmayr, Piao & Li, MycoKeys 85: 49 (2021)

 Typification details – Holotype, CAF 800005; ex-type, CFCC 54190

 Host – *Alnus glutinosa* (Betulaceae)

 Distribution – Europe (The Netherlands)

 Notes – *Diaporthe pseudoalnea* was introduced from branches of *Alnus glutinosa* by Jiang et al. (2021). The original publication described and illustrated the morphology of the asexual morph, which includes pycnidial conidiomata, with a solitary undivided locale, cylindrical, phalidic, unbranched, hyaline conidiophores, subcylindrical, aseptate, hyaline alpha conidia (Jiang et al. 2021). The sexual morph is undetermined. In the phylogenetic tree of Jiang et al. (2021), *D. pseudoalnea* formed a distinct clade from other *Diaporthe* species, and this concurs with Norphanphoun et al. (2022), who accept this species as a singleton species in *Diaporthe*.

Diaporthe pseudobauhiniae C. Norphanphoun & K.D. Hyde, nom. nov.

 Index Fungorum number: IF900763; Facesoffungi number: FoF14131

 = *Diaporthe chiangraiensis* (Sennan & Hyde) C. Norphanphoun & K.D. Hyde (2022)

D. pseudobiguttulata I. Senanayake & S. Hongsanan, nom. nov.

Index Fungorum number: IF900764; Faceoffungi number: FoF 14509

Typification details – Holotype, ZJUD 47H
Host – Citrus limon (Rutaceae), Juglans regia (Juglandaceae)
Distribution – Asia (China)

Notes – Diaporthe biguttulata described by Huang et al. (2015) is considered as Nom. illegit., Art. 53.1. This is because D. biguttulata described by Gao et al. (2015) was published earlier, on 22 July 2014, while D. biguttulata described by Huang et al. (2015) was published on 3rd March 2015. Considering the phylogenetic placement of the strain ZJUD47 identified as D. biguttulata Huang et al., it formed within the D. sojae species complex, while the type of D. biguttulata Gao et al. formed within the D. eres species complex (Norphanphoun et al. 2022). Yang et al. (2018a) identified their two new isolates CFCC 52584 and CFCC 52585 as D. biguttulata Huang et al. based on morphology and phylogenetic placement as they clustered with ZJUD47, this also observed in Norphanphoun et al. (2022). Therefore, we propose the new name D. pseudobiguttulata to accommodate the strains described by Huang et al. (2015) and Yang et al. (2018a).

Typification details – Holotype, URM 91188; ex-type, URM 7874
Host – Poincianella pyramidalis (Fabaceae)
Distribution – South America (Brazil)

Notes – Diaporthe pseudoinconspicua was introduced using morphology and molecular data of its asexual morph. It was found on Poincianella pyramidalis in Paraíba, Brazil. The species is closely related to D. inconspicua and D. pterocarpi (Crous et al. 2018b). However, D. pseudoinconspicua differs from D. inconspicua based on pycnidial conidiophores, and alpha and
beta conidia sizes (Crous et al. 2018b). *Diaporthe pseudoinconspicua* differs from *D. pterocarpi* by the size of its pycnidia and alpha conidia as well as by the absence of beta conidia (Udayanga et al. 2012a). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pseudoinconspicua* clustered in the *D. oncostoma* species complex.

Diaporthe pseudomangiferae R.R. Gomes, Glienke & Crous, Persoonia 31: 30 (2013)

Typification details – Holotype, CBS H-21105; ex-type, CBS 101339

Host – *Mangifera indica* (Anacardiaceae)

Distribution – North America (Dominican Republic, Mexico, USA)

Notes – Gomes et al. (2013) introduced *Diaporthe pseudomangiferae* as closely related to *D. magiferae*. The species was found on *Mangifera indica* in Dominican Republic, Mexico. Conidiomata are pycnidial, erumpent to superficial on PDA, globose, with elongated necks with central ostioles that exude yellow-orange to cream conidial droplets, cylindrical and straight to sinuous, 1–3-septate, branched conidiophores, phialidic, cylindrical, terminal and lateral with slight apical taper collarette flared and up to 3 μm long conidiogenous cells, unbranched or branched paraphyses, fusiform, tapering towards both ends, apex acutely rounded, base truncate, aseptate, hyaline, smooth, guttules to granular alpha conidia. *Diaporthe pseudomangiferae* differs from *D. magiferae* by having larger conidiomata, longer conidiophores and larger alpha conidia. A detailed description of the asexual morph is available in Gomes et al. (2013). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pseudomangiferae* clustered in the *D. arecae* species complex.

Typification details – Holotype, HHUF 30617

Host – *Homo sapiens* (Diseased human eye)

Distribution – Asia (Japan)

Notes – This species was isolated from clinical eye samples in Honshu, Japan and was introduced based on molecular data (Ozawa et al. 2019). It is characterized by pycnidial conidiomata, scattered to 2–3 grouped, immersed, erumpent at the ostiolar neck, globose to depressed globose and with white to yellow conidial mass, with cylindrical to papillate, central ostiole neck, pycnidial wall comprising flattened polygonal cells, filamentous paraphyses, ellipsoid, aseptate, hyaline alpha conidia, sigmoid, aseptate and hyaline beta conidia. There is no important morphological character to distinguish it from other *Diaporthe* species. Ozawa et al. (2019) confirmed this species as a human pathogen.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pseudooculi* clustered in the *D. arecae* species complex.

Diaporthe pseudophoenicicola R.R. Gomes, Glienke & Crous, Persoonia 31: 30 (2013)

Typification details – Holotype, CBS H-21106; ex-type, CBS 462.69

Hosts: *Mangifera indica* (Anacardiaceae), *Phoenix canariensis*, *P. dactylifera* (Arecaceae)

Distribution – Asia (China, Iraq), Europe (Spain)

Notes – Gomes et al. (2013) introduced *Diaporthe pseudophoenicicola* as a phylogenetically closely related species to *D. phoenicicola*. The species was first found on *Phoenix dactylifera* in Baleares, Spain. Conidiomata are pycnidial, erumpent and globose with neck. Ostiole is exuding yellow to orange conidial droplets. Alpha conidia are aseptate, hyaline, granular, smooth, fusiform, tapering towards both ends, straight, acutely rounded apex, and truncate base. *Diaporthe pseudophoenicicola* differs from *D. phoenicicola* by developing shorter and wider alpha conidia (Gomes et al. 2013). The sexual morph is undetermined. A detailed description was given in Gomes et al. (2013). In the phylogenetic analysis of Gomes et al. (2013), the type strain of *D. pseudophoenicicola* (CBS 462.69) and the representative strain (HNQZ01) did not cluster together.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pseudophoenixicola* clustered in the *D. arecae* species complex.

Diaporthe pseudotsugae Dissan., Camporesi & K.D. Hyde, Mycosphere 8(5): 869 (2017)
Typification details – Holotype, MFLU 15-1274
Host – *Pseudotsuga menziesii* (Pinaceae)
Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced this species as a saprobic sexual morph on dead land cones of *Pseudotsuga menziesii* in Italy. The species has globose to oval, black ascomata, clustered in groups and deeply immersed in host tissue protruding through substrata, with thick peridium, unitunicate, 8-spored, sessile, elongate to clavate asci, elongated to elliptical, 1-septate, hyaline ascospores, with often 4-guttules, larger guttules at the centre and smaller ones at the ends. Living cultures are not available for this species. In addition, there is no important morphological character to distinguish it from other *Diaporthe* species (Dissanayake et al. 2017b).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pseudotsugae* clustered in the *D. rudis* species complex.

Diaporthe psoraleae Crous & M.J. Wingf., in Crous et al., Persoonia 31: 205 (2013)
Typification details – Holotype, CBS H-21422; ex-type, CPC 21634, 21635 = CBS 136412
Host – *Psoralea pinnata* (Fabaceae)
Distribution – Africa (South Africa)
Notes – *Diaporthe psoraleae* was found on *Psoralea pinnata* in Western Cape, South Africa. Crous et al. (2013) introduced this species with molecular data. *Diaporthe psoraleae* has pycnidial conidiomata, globose, aggregated in a large stroma, black, erumpent and exuding creamy conidial droplets from central ostioles, cylindrical and straight to sinuous, unbranched, 1–2-septate conidiophores, phialidic, cylindrical, terminal conidiogenous cells, with visible periclinal thickening, and 1–2-septate paraphyses, obvoid to fusoid to ellipsoid, tapering towards both ends, straight, aseptate, hyaline, smooth, guttules alpha conidia. In addition, there is no important morphological character to distinguish it from other *Diaporthe* species (Crous et al. 2013). Pathogenicity data is not available for this species.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe psoraleae* clustered in the *D. oncostoma* species complex.

Diaporthe psoraleae-bituminosa Petr., Anns mycol. 20(1/2): 5 (1922)
Typification details – Holotype, Petrak, 30 Sept. 1918
Host – *Psoralea bituminosa* (Fabaceae)
Distribution – Europe (Albania)
Notes – *Diaporthe psoraleae-bituminosa* was introduced by Petrak (1922). The species was found on *Psoralea bituminosa* in Albania. The sexual morph of this species has loosely and irregularly scattered perithecia, 8-spored, sessile, clavate to spindle-shaped, tapered at both ends asci, 45–50 × 9–11 µm, elongate to spindle-shaped, rounded at both ends, straight or somewhat unequal, 1-septate, slightly constricted, 3-guttules ascospores, 10–13 × 3–4 µm (Petrak 1922). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Petrak 1922). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe psoraleae-pinnatae Crous & M.J. Wingf., in Crous et al., Persoonia 31: 205 (2013)
Typification details – Holotype, CBS H-21423; ex-type, CPC 21638, 21639 = CBS 136413
Host – *Psoralea pinnata* (Fabaceae)
Distribution – Africa (South Africa)
Notes – *Diaporthe psoraleae-pinnatae* was introduced by Crous et al. (2013) with molecular data. The species was found on *Psoralea pinnata* in Western Cape, South Africa. Morphologically,
D. psoraleae-pinnatae has conidiomata which are pycnidial, globose, up to 250 µm diam., black, erumpent, exuding creamy conidial droplets from central ostioles, cylindrical, straight to sinuouse, 0–1-septate, unbranched conidiophores, with phialidic, cylindrical, terminal conidiogenous cells, with visible periclinal thickening, subcylindrical to fusoid to ellipsoid, tapering towards both ends, straight, apex obtuse, base sub truncate, aseptate, hyaline, guttules alpha conidia. Gamma conidia and beta conidia are not observed (adapted from Crous et al. 2013). In addition, there is no important morphological character to distinguish it from other Diaporthe species. The sexual morph is undetermined. Pathogenicity data is not available for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe psoraleae-pinnatae clustered in the D. varians species complex.

≡ Phomopsis pterocarpi S. Hughes, Mycol. Pap. 50: 54 (1953)
Typification details – Holotype, IMI 45010; epitype, MFLU 12-0120; ex-epitype, MFLUCC 10-0572
Hosts – Magnolia sp. (Magnoliaceae), Pterocarpus erinaceus, P. indicus (Fabaceae)
Distribution – Africa (Togo), Asia (Thailand)
Notes – Diaporthe pterocarpi was first introduced as Phomopsis pterocarpi by Hughes (1953). It was epitypified and synonymized under D. pterocarpi by Udayanga et al. (2012a). This species has 2–3-guttules, 6–9 × 2.5–3 µm alpha conidia distinguishes it from D. pterocarpicola. The latter species has conidia with mostly multi-guttules and guttules conidiophores (Udayanga et al. 2012a). The sexual morph of D. pterocarpi is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe pterocarpi clustered in the D. oncostoma species complex.

Typification details – Holotype, MFLU 12-0129; ex-type, MFLUCC 10-0580a
Host – Pterocarpus indicus (Fabaceae)
Distribution – Asia (Thailand)
Notes – Diaporthe pterocarpicola was found on Pterocarpus indicus in Chiang Rai, Thailand. Udayanga et al. (2012a) introduced this species as a closely related species to D. pterocarpi based on molecular data. Diaporthe pterocarpicola has 2–3-guttules, 6–9 × 2.5–3 µm alpha conidia, which is different to D. pterocarpicola, which mostly has multi-guttules conidia and guttules conidiophores. However, it is important to note that these characteristics can vary depending on the culture conditions. These two species can be differentiated using combined ITS, tefl-a, tub2, and cal genes (Udayanga et al. 2012a). The sexual morph of D. pterocarpicola is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe pterocarpicola clustered in the D. arecaes species complex.

Diaporthe pulchra (Curr.) Sacc., Syll. fung. (Abellini) 1: 617 (1882)
Typification details – Holotype, Tab. XLVIII, fig. 143 (loc. Cit.)
Host – N/A
Distribution – Europe (United Kingdom: Great Britain, Weybridge)
Notes – This species was first introduced as Sphaeria pulchra. Later, Saccardo (1882a) synonymized it under Diaporthe. Diaporthe pulchra is characterized by aggregated perithecia with strong stroma, 8-spored, fusoid, briefly stipitate asci, and biseriate, elliptical, 1-septate, slightly constricted at the middle and slightly acuminate at each end, greenish ascospores. There are no
other important morphological characteristics to distinguish it from other Diaporthe species (Saccardo 1882a). Sequence data is not available for this species.

- Typification details – N/A
- Host – *Campsis radicans* (Syn. *Tecoma radicans*) (Bignoniaceae)
- Distribution – Europe (Belgium)
- Notes – *Diaporthe punctulata* was reported on branch of *Campsis radicans* (*Tecoma radicans*) (Saccardo 1891). The species produced globose perithecia, scattered, 250–260 μm diam., black, immersed in a black-bordered cortical stroma, punctiform, erumpent ostiole, cylindrical-clavate asci, 60–70 × 7–8 μm, subsessile, 8-spored, with distichous, ellipsoid to fusoid, hyaline, obtuse, 1-septate, constricted ascospores, 4-guttules, 12–15 × 4–4.5 μm (Saccardo 1891). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pungensis Nitschke, Pyrenomyc. Germ. 2: 296 (1870)
- = *Phoma pungens* Nitschke ex Sacc., Michelia 1(no. 5): 520 (1879)
- = *Phoma ribesia* Sacc., Syll. fung. (Abellini) 3: 88 (1884)
- = *Phomopsis pungens* (Nitschke ex Sacc.) Grove, British Stem- and Leaf-Fungi (Coelomycetes) (Cambridge) 1: 212 (1935)
- = *Phomopsis ribesia* (Sacc.) Died., Annls mycol. 9(1): 29 (1911)
- Typification details – N/A
- Host – *Ribes grossularia* (Grossulariaceae)
- Distribution – Europe (Great Britain)
- Notes – *Diaporthe pungens* was reported by Nitschke (1870). This species was found on *Ribes grossularia* in Great Britain, and was introduced using morphological data. The pycnidia are gregarious, globose with dense and indistinct texture (Grove 1935). The asci are oblong to sub-cylindrical, 54–60 μm with oblong to fusoid, inequilateral, 2-guttules ascospores, 11–14 μm (Saccardo 1882). Sequence data is not available for this species.

Diaporthe pusilla Sacc., Annls mycol. 12(3): 289 (1914)
- Typification details – Holotype, Petrak 3 (1913)
- Host – *Corylus avellana* (Betulaceae)
- Distribution – Europe (Germany)
- Notes – *Diaporthe pusilla* was introduced using morphological data of sexual morph by Saccardo (1914). The species was found from *Corylus avellana* in Germany. It is characterized by gregarious perithecia, nesting in the bark, with short and obtuse papillate, 8-spored, fusoid, sessile asci, with obtuse and bifoveolate at apex, 45–50 × 6–7 μm, aparaphysate, terete to fusoid, gently
constricted at the middle, 4-guttules, hyaline ascospores, 10–12 × 3.5–4 µm (Saccardo 1914). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1914). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe pustulata Sacc., Syll. Fung. (Abellini) 1: 610. (1882)

= *Chorostate pustulata* (Sacc.) Sacc., in Trotter, Syll. fung. (Abellini) 24(2): 751 (1928)

= *Phoma pustulata* Sacc., Syll. fung. (Abellini) 3: 91 (1884)

= *Phomopsis pustulata* (Sacc.) Died., Annls mycol. 9(1): 28 (1911)

= *Sclerophoma pustulata* (Sacc.) Petr., Annls mycol. 17(2/6): 60 (1920)

Typification details – N/A

Hosts – *Acer palmatum, A. platanoides, A. pseudoplatanus, Acer* sp. (Sapindaceae), *Fagus sylvatica* (Fagaceae), *Prunus padus* (Rosaceae)

Distribution – Asia (Japan), Europe (Austria, Bulgaria, Czech Republic, Denmark, France, Hungary, Poland, United Kingdom)

Notes – The asexual morph of *Diaporthe pustulata* is *Phomopsis pustulata*, which is characterized by 14 long µm conidiogenous cells and 10–13 × 3.5 µm alpha conidia. The sexual morph of this species has stromata on the host surface as truncate-conical or angular pustules with a central blackened disc through which a small cluster of ostioles is erumpent. Often each pustule is surrounded by a slightly raised or blackened ridge caused by the abutting of the ventral zone. Ascomata in clustered, collectively erumpent, ostioles stout-cylindrical. Asci are clavate, with a refractive apical ring. (Saccardo 1882a, Gomes et al. 2013). Gomes et al. (2013) provided sequence data for this species. Index Fungorum (2023) currently lists this species as a synonym of *D. niessliana*. However, we could not find any published data to confirm this synonymization. Therefore, we treat both species as distinct species until further information becomes available.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe pustulata* was initially placed within the *D. amygdali* species complex. Considering that the publication year of *D. pustulata* predates that of *D. amygdali*, the name *D. pustulata* species complex was used instead of *D. amygdali* species complex (Norphanphoun et al. 2022). However, based on GMYC, PTP analyses, and phylogenetic network (Hilário et al. 2021a), *D. pustulata* is a distinct species and not considered a member of the *D. amygdali* species complex. Therefore, we recommend using the name *D. amygdali* species complex for this complex.

Diaporthe putator Nitschke, Pyrenomyc. Germ. 2: 306 (1870)

= *Phlyctema pseudophoma* (Sacc.) Sacc., Michelia 1(no. 5): 528 (1879)

= *Phoma putator* (Nitschke) Sacc., Michelia 2(no. 8): 616 (1882)

= *Phomopsis putator* (Nitschke) Traverso, Fl. ital. crypt. (Florence) 2(1): 283 (1906)

= *Septoria pseudophoma* Sacc., Michelia 1(no. 5): 528 (1879)

Typification details – N/A

Hosts – *Populus alba, P. tremula* (Salicaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe putator* was reported by Nitschke (1870). This species was found on *Populus alba* and *P. tremula* in Germany, and was introduced using morphological data. The species is characterized by scattered or gregarious pycnidia, oblong asci, 48–52 µm, with fusiform, hyaline ascospores, 12–13 µm (Grove 1935). Sequence data is not available for this species.

Typification details – N/A

Host – *Berberis vulgaris* (Berberidaceae)

Distribution – Europe (Germany)
Notes – This species was introduced using morphological data by Otth (1871). It was found on Berberis vulgaris. Diaporthe pycnostoma is characterized by perithecia in pustulate cortical stroma, submerged, congested into a circle, 8-spored, elongate to ellipsoid, exceptionally transparent asci, narrowly but barely noticeably septate, hyaline, 4-guttules ascospores, 16 × 6 µm (Otth 1871). There are no other important morphological characteristics to distinguish it from other Diaporthe species (Spegazzini 1881). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe quadruplex Wehm., Canadian Journal of Research, Section C 20(12): 590 (1942)

Typification details – Holotype, L.E. Wehmeyer (No. 207)

Host – *Solidago* sp. (Asteraceae)

Distribution – North America (Canada)

Notes – This species was found on *Solidago* sp. in Nova Scotia, Canada and was introduced using morphological data of sexual morph. It is characterized by scattered singly or usually crowded perithecia in longitudinal series, with erumpent, conical to cylindric ostiole, pustulate swelling, stout clavate, with 4-spored ascii, a refractive ring in the apex, 47–53 × 10.5–12.5 µm, biseriate, fusoid to ellipsoid, somewhat curved, 1-septate, constricted at the septum, 4-guttules ascospores, 22.5–27 × 2.5–5 µm (Wehmeyer 1942). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Wehmeyer 1942). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe quercina Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

Typification details – N/A

Host – *Quercus* sp. (Fagaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe quercina* was found on dead branches of *Quercus* sp. in Oestrich, Germany and introduced using morphological data (Fuckel 1870). It has oblong, sessile asci, 50 × 6 µm, oblong-lanceolate 4-guttules, thick and hyaline ascospores, 16 × 3 µm (Fuckel 1870). There are no other important morphological characteristics to distinguish it from other *Diaporthe* species (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe quercicola Qin Yang, in Cao, Luo, Lin, Yang & Deng, MycoKeys 91: 40 (2022)

Typification details – Holotype, CSUFTCC104; ex-type, CSUFTCC104

Host – *Quercus aliena* (Fagaceae)

Distribution – Asia (China)

Notes – *Diaporthe quercicola* was introduced by Cao et al. (2022). It was found on branches of *Quercus aliena* in Shaanxi Province, China. The species produced pycnidial conidiomata on PDA, with single or clustered in groups of 3–5 pycnidia, coated with hyphae, conidiophores reduced to conidiogenous cells, cylindrical, unbranched, straight conidiogenous cells, with fusiform, aseptate, eguttulate, hyaline alpha conidia, and filiform, aseptate, eguttulate, hyaline beta conidia. The detailed description of asexual morph for this species was given in Cao et al. (2022). The sexual morph is undetermined. In the phylogenetic tree of Cao et al. (2022), this species is closely related to *D. biguttulata* strain ZJUD47 (current name: *D. pseudobiguttulata*). However, *D. quercicola* is different in having fusiform, eguttulate alpha conidia and narrower beta conidia (1 µm vs. 0.9–1.6 µm) (Huang et al. 2015, Cao et al. 2022).

Diaporthequilimensis Speg., Anal. Soc. cient. argent. 12(4): 174 (1881)

Typification details – Holotype, Spegazzini, Jul. 1881

Host – *Lucuma neriifolia* (Sapotaceae)

Distribution – South America (Argentina)

Notes – This species was introduced using morphological data. Stromata are barely visible and circumscribed, with irregularly sparse, completely embedded, globular perithecia, ostiolate,
fusoid asci, 50–60 × 10–12 µm, aparaphysate, elliptic, both obtusely rounded, middle 1-septate-constricted, 2-guttules and hyaline ascospores, 15–16 × 5–6 µm. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Spegazzini 1881). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – Holotype, CBS H-23377; ex-type, CBS 143770 = CPC 26646
- Host – *Euclea racemosa* (Ebenaceae)
- Distribution – Africa (South Africa: Western Cape)
- Notes – Marin-Felix et al. (2018) introduced *Diaporthe racemosae* as phylogenetically closely related to *D. schini* and *D. rosigthorora*. *Diaporthe racemosae* produces only alpha conidia while *D. schini* produces only beta conidia (Marin-Felix et al. 2019). This species is characterized by pycnidial conidiomata on PNA, globose or irregular, solitary, deeply embedded in media, erumpent, dark brown to black, produces yellowish translucent to pale brown conidial drops and/or cirrus exuded from ostioles, with cylindrical, straight, 0–1-septate, hyaline conidiophores, phialidic, hyaline, terminal, subcylindrical, and tapered towards the apex conidiogenous cells, ellipsoidal to subcylindrical, aseptate, hyaline alpha conidia, with non- to multi-guttules and acute or rounded at both ends.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe racemosae* clustered in the *D. sojae* species complex.

Diaporthe radicina Ellis & Everh., Am. Nat. 31: 342 (1897)
- Typification details – Holotype, NY, Ellis & Everhart, Dec. 1896
- Host – *Phleum pratense* (Poaceae)
- Distribution – North America (USA: New Jersey)
- Notes – This species was introduced using morphological data. Perithecia in small groups is buried in the matrix, which is blackened on the surface, with erumpent, short, cylindrical, smooth and obtuse ostiole, cylindrical to fusoid asci, 1–2 seriate, oblong, 3–4 nucleate and scarcely constricted ascospores. There are no other important morphological characteristics to distinguish it from other *Diaporthe* species (Ellis & Everhart 1897b). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe radula Nitschke, Pyrenomyc. Germ. 2: 313 (1870)
- Typification details – N/A
- Host – *Prunus spinosa* (Rosaceae)
- Distribution – Europe (Germany, Gallia or Gaul region)
- Notes – This species was found on *Prunus spinosa* and introduced using morphological data of sexual morph. Detailed descriptions are available in Nitschke (1870) and Saccardo (1882a), with oblong asci, 60–66 × 9–10 µm, oblong to fusiform, acute on both sides, usually straight, 1-septate, finally constricted at the middle septum, 4-guttules, hyaline ascospores, 14–15 × 4 µm. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe raonikayaporum R.R. Gomes, Glienke & Crous, Persoonia 31: 31 (2013)
- Typification details – Holotype, CBS H-21097; ex-type, CBS 133182 = LGMF 923 = CPC 20299
- Host – *Spondias mombin* (Anacardiaceae)
- Distribution – South America (Brazil)
- Notes – *Diaporthe raonikayaporum* was introduced as an endophytic, isolated from the medicinal plant, *Spondias mombin* in Pará, Brazil. This species has pycnidial conidiomata which are globose to conical or ampulliform, eustromatic and convoluted or unilocular, scattered, dark
brown to black and immersed, ostiole with prominent necks, white to pale-luteous conidial mass. Alpha and gamma conidia are formed in the same conidiogenous cells. Alpha conidia are hyaline, oblong to ellipsoid, apex bluntly rounded, base obtuse to subtruncate, 2- to multi-guttules. Gamma conidia are hyaline, fusoid to subcylindrical, slightly curved, apex bluntly rounded, base obtuse to sub truncate, 2- to multi-guttules and or eguttules (Gomes et al. 2013). A detailed description was given by Gomes et al. (2013). There are no important morphological characters to distinguish it from other *Diaporthe* species (Gomes et al. 2013). However, this species was introduced as a distinct species using molecular data. The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe raonikayaporum* clustered in the *D. sojae* species complex.

Diaporthe raphani Brunaud, Bull. Soc. bot. Centre-Ouest 3: 217 (1893)
 Typification details – N/A
 Host – *Raphanus raphanistrum* (Brassicaceae)
 Distribution – Europe (Gallia or Gaul region)
 Notes – *Diaporthe raphani* was introduced using morphological data of sexual morph. It has small, globose, long neck perithecia, 60–65 × 8 µm asci, 4-guttules, hyaline ascospores, 16–18 × 3 µm (Saccardo 1895). There are no other important morphological characters to distinguish it from other *Diaporthe* species. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe recedens Sacc., Annls mycol. 12(3): 290 (1914)
 Typification details – Holotype, Petrac 21 (1913)
 Host – *Populus nigra* (Salicaceae)
 Distribution – Europe (Germany)
 Notes – *Diaporthe recedens* was found on *Populus nigra* in Germany, and was introduced using morphological data of sexual morph. It is characterized by loosely gregarious perithecia, ostiolate, fusoid, subsessile, rounded and bifoveolate at apex asci, 60–75 × 8.5 µm, fusiform, straight or curved, 1-septate, not constricted, 4-guttules, hyaline ascospores, 12–15 × 3.5–4.5 µm (Saccardo 1914). There are no other important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1914). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe recondita Sacc., G. bot. ital., n.s. 23(2): 204 (1916)
 Typification details – Holotype, Baker 3793
 Host – *Gliricidia maculata* (Fabaceae)
 Distribution – Asia (The Philippines)
 Notes – This species was introduced using morphological data, widely spread, minute, globular perithecia, 120–130 cm diam., ostiole not protruding, fusoid, apex obtuse and light bifoveolate asci, 30–35 × 4–4.5 µm, distichous, oblong, with guttules ascospores. There are no other important morphological characters to distinguish it from other *Diaporthe* species (Saccardo 1916). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe rehmiana Starbäck, Bih. K. svenska VetenskAkad. Handl., Afd. 3 16(no. 3): 5 (1890)
 Typification details – N/A
 Host – *Ulmus campestris* (Ulmaceae)
 Distribution – Europe (Germany: Amselgrund)
 Notes – This species was introduced using morphological data. It has gregarious scattered stromata, first bark pustulate, then irregular cleft and elevating at the base, with globular, somewhat larger perithecia in a single stroma, with longer, cylindrical ostioles, cylindrical to clavate asci, 60–70 × 7–9 µm, fusiform to ellipsoidal, 1-septate ascospores, 15–20 × 3.5–5.5 µm. There are no other
important morphological characters to distinguish it from other *Diaportha* species (Starbäck 1890). The asexual morph is undetermined. Sequence data is not available for this species.

Diaportha reecta Fuckel & Nitschke, in Nitschke, Pyrenomyc. Germ. 2: 304 (1870)

 Typification details – N/A

 Host – *Buxus sempervirens* (Buxaceae)

 Distribution – Europe (United Kingdom)

 Notes – *Diaportha reecta* was found on *Buxus sempervirens* in the United Kingdom, and was introduced using morphological data. It is characterized by having clavate to subcylindrical asci, 60–63 × 6–7 μm, with subcylindrical, 1-septate, not constricted, 4-guttules ascospores, 13–16 × 3–4, and spermatogonia were reported (Nitschke 1870, Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaportha revellens Nitschke, Pyrenomyc. Germ. 2: 302 (1870)

 = *Phomopsis revellens* Sacc., Syll. fung. (Abellini) 3: 99 (1884)

 = *Phomopsis revellens* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 282 (1906)

 Typification details – N/A

 Host – *Corylus avellana* (Betulaceae)

 Distribution – Europe (Great Britain)

 Notes – *Diaportha revellens* was reported by Nitschke (1870). The species is characterized by gregarious, convex or globose-depressed pycnidia, 8-spored, clavate to subcylindrical asci, 50–60 × 7–8 μm, fusiform to subcylindrical, obtuse on both sides, straight or slightly curved, 1-septate, not constricted in the middle, subhyaline ascospores, 11–14 × 3–6 μm, with oblong, 2-guttules, hyaline spermatia, 6–7 × 3 μm (Saccardo 1882a, 1884). Sequence data is not available for this species.

Diaportha rhamnigena Petr., Annls mycol. 13(1): 48 (1915)

 Typification details – Isotype, F. Petrak s.n. (Label on type specimen package)

 Host – *Rhamnus cathartica* (Rhamnaceae)

 Distribution – Europe (Czech Republic: Hranice)

 Notes – This species was introduced using morphological data of sexual morph, with 2–4 densely grouped perithecia, erumpent ostiole, cylindrical to fusoid asci, 50–60 × 5–6 μm, aparaphysate, and fusoid, 3–4-septate, only gently constricted at the middle septum, 3–4-guttules, hyaline ascospores (Petrak 1915). The asexual morph is undetermined. Sequence data is not available for this species.

Diaportha rhodomyrti C.M. Tian & Qin Yang, in Cao, Luo, Lin, Yang & Deng, MycoKeys 91: 41 (2022)

 Typification details – Holotype, BJFC-S1660; ex-type, CFCC 53101

 Host – *Rhodomyrtus tomentosa* (Myrtaceae)

 Distribution – Asia (China)

 Notes – *Diaportha rhodomyrti* was introduced by Cao et al. (2022). It was found on leaves of *Rhodomyrtus tomentosa* in Jiangxi Province, China. The species produced pycnidial conidiomata on PNA, often with translucent conidial drops exuding from ostioles, conidiophores reduced to conidiogenous cells, cylindrical, unbranched, septate conidiogenous cells, with ellipsoidal, aseptate, 2-guttules, hyaline alpha conidia, filiform, aseptate, eguttulate, hyaline beta conidia. The detailed description of asexual morph for this species was given in Cao et al. (2022). The sexual morph is undetermined. In the phylogenetic tree of Cao et al. (2022), this species is closely related to *D. hongkongensis*, which is a member of the *D. arecae* species complex as shown in the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1). However, *D. rhodomyrti* differs from *D. hongkongensis* by having longer conidiogenous cells (15.5–23 vs. 5–12 μm) and narrower beta conidia (1–1.5 vs. 1.5–2 μm) (Gomes et al. 2013, Cao et al. 2022).
Diaporthe rhoina Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 145 (1903)
 Typification details – N/A
 Hosts – Prunus mahaleb (Rosaceae), Rhus sp., Rhus toxicodendron, R. typhina, R. venanata, R. vernix (Anacardiaceae)
 Distribution – North America (USA), Europe (Luxembourg)
 Notes – Diaporthe rhoina was established by Feltgen (1903) on dried, barked branch of Rhus typhina. It produced patches stroma, varying in shapes, mostly elongate-elliptical, blunt, or somewhat pointed at the ends, 0.5–1–2.5 mm long, 0.3–0.7 mm wide, gently convex, blackening the bark tissue, not affecting the underlying wood, but usually more arch-shaped, limited hem line. Perithecia are depressed to 2–4 to the cortical stroma, globular-ovate, with a short conical orifice protruding on the stomatal surface, 0.2–0.3 mm wide. Asci are oblong or clavate, sessile, 8-spored, 35–45 × 8–10 µm. Ascospores are bi- to triseriate, obtusely elliptical, straight or curved, 1- to 3-septate, constricted at the septa, with 4 guttulate, hyaline, 12–14 × 3.5–4.5 µm. The asexual morph was not reported. The phylogenetic tree based on multigene analyses revealed that Diaporthe rhoina (strain CBS 146.27) clustered in the D. varians species complex (Norphanphou et al. 2022).

Diaporthe rhois Nitschke, Pyrenomyc. Germ. 2: 315 (1870)
 = Phoma rhois Sacc., Michelia 2(no. 7): 340 (1881)
 = Phomopsis rhois (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 258 (1906)
 = Valsa rhois (Nitschke) Cooke, Fungi Brit. Exs., ser. 2: no. 245 (1875)
 Typification details – N/A
 Host – Rhus cotinus, R. radicans, Rhus sp., R. typhina (Anacardiaceae), Toxicodendron radicans (Anacardiaceae)
 Distribution – Europe (Czechoslovakia, Germany, United Kingdom)
 Notes – Diaporthe rhois was erected by Nitschke (1870) on dead branches of Rhus cotinus in Germany. It is characterized by diatrypous stroma, surrounded by the outermost blackish layer, small, globose, depressed perithecia, nesting in the parenchyma of the inner cortex, minute ostiole, with a short neck, oblong, clavate asci, 8-spored, sessile, 64 × 10–12 µm, and subdistichous, obliquely monostichous, oblong, straight, obtuse at both ends, 1- to 3-septate, 3-guttules, constricted at septum, hyaline ascospores, 16 × 5–6 µm. The asexual morph of D. rhois produces oblong-cylindric spermatia, 10 × 2–2.25 µm, 2-guttules, with filiform-hamate, hyaline basidia (Saccardo 1882a). Wehmeyer (1933b) considered Diaporthe rhois as a member of the D. eres. Sequence data of Phomopsis rhois (strain NEFU04; MH050404) is available on NCBI, but they have not been published yet. Therefore, the placement of this species is not confirmed.

Diaporthe rhynchophora Fabre, Annls Sci. Nat., Bot., sér. 6 9: 76 (1879) [1878]
 Typification details – N/A
 Host – Coronilla minima (Fabaceae)
 Distribution – N/A
 Notes – Diaporthe rhynchophora was identified and described from the dried branches of Coronilla minima by Fabre (1879). The species has globose and black perithecia, nesting in blackened wood, ca. 250 µm, with elongate, curved, dark, shiny, light, or nodular scaly ostiole, papillate apex, 8-spored, lanceolate, sessile asci, 45–50 × 8 µm, oblong-lanceolate, 4-guttules, hyaline ascospores, 16 × 4 µm. A detailed sexual morph description for the species is available in Fabre (1879). The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – Holotype, LPS, Spegazzini, Apr. 1904
 Host – Ricinus communis (Euphorbiaceae)
 Distribution – South America (Argentina)
 Notes – Diaporthe ricini was found on dead branches of Ricinus communis in Buenos Aires, Argentina and was introduced by Spegazzini (1909). This species is characterized by having
globose perithecia, 100–150 µm in diam., with a barely papillate ostiole piercing the surface of host, subfusoid ascospores, 50 × 8–9 µm, aseptate, 8-spored, distichous, elliptic-subfusoid, rounded at both sides, 1-septate, gently constricted in the middle, coarsely 4-guttules, hyaline ascosores, 14–15 × 5 µm. A detailed description of this species is available in Spegazzini (1909). The asexual morph was not reported. Sequence data is not available for this species.

Diaporthe rizhaoensis Y.Q. Zhu & Ning Jiang, in Zhu, Ma, Xue, Piao, Li & Jiang, MycoKeys 95: 217 (2023)

- Typification details – Holotype, CAF 800069; ex-type, CFCC 57562
- Host – *Xanthium strumarium* (Asteraceae)
- Distribution – Asia (China)
- Notes – *Diaporthe rizhaoensis* was introduced by Zhu et al. (2023). The species was found on dead culms of *Xanthium strumarium* in Shandong, China. *Diaporthe rizhaoensis* sporulated in MEA, and produced pycnidial, 150–400 µm, scattered conidiomata, guttulate, 6.7–11.4 × 1.6–3.0 µm, straight or slightly curved conidiogenous cells, filiform, 12.9–23.4 × 1.1–2.1 µm, straight or slightly curved beta conidia, while alpha conidia and gamma conidia not observed. The detailed descriptions and illustrations of the asexual morph for this species were given in Zhu et al. (2023). The sexual morph was not observed.

 In the phylogenetic tree of Zhu et al. (2023), *Diaporthe rizhaoensis* clustered in a distinct clade in the *D. sojae* species complex.

- Typification details – Holotype, Peck s.n.; Shear s.n.
- Hosts – *Acer dasyacarpum*, *Acer saccharinum*, *Acer saccharum* (Sapindaceae)
- Distribution – North America (USA)
- Notes – The species was introduced by Peck (1896). It was found on *Acer saccharinum* and *A. dasyacarpum* in the USA. *Diaporthe robusta* is characterized by numerous pustules, erumpent, surrounded by a black circumscribing line and covered by a black crust, with obscure or prominent distinct ostiole, subfusoid from asci, 73–89 × 15 µm, and crowed or 2-seriate, oblong to elliptical, obtuse, strongly constricted in the middle, 13–18 × 6–8 µm, with a large nucleus in each cell (adapted from Peck 1896). Peck (1896) noted that *D. robusta* is allied to *D. acerina*, but is distinguished from it by having numerous pustules, larger asci and more strongly constricted spores.

- Typification details – Holotype, MFLU 17-1550; ex-type, MFLUCC 17-2658
- Hosts – *Magnolia champaca* (Magnoliaceae), *Nephelium lappaceum* (Sapindaceae), *Rosa* sp. (Rosaceae), *Senna siamea* (Fabaceae)
- Distribution – Asia (Thailand)
- Notes – *Diaporthe rosae* was introduced by Wanasinghe et al. (2018), a saprobic fungus which was isolated from a dead pedicel of *Rosa* sp. in Chiang Rai Province, Thailand. The morphological description of its asexual morph was given by Wanasinghe et al. (2018), with pycnidial conidiomata, scattered, ellipsoidal patches on the host surface, globose to pyriform, coriaceous, elongate neck, branched conidiophores or sometimes reduced to conidiogenous cells, aseptate, phialidic, ampulliform, hyaline alpha conidiogenous cells, with enteroblastic, ovate to ellipsoidal, aseptate, 2-guttules, hyaline alpha conidia, and phialidic ampulliform boston conidiogenous cells, which produced fusiform to hooked, aseptate, hyaline beta conidia. Morphological description of sexual morph is available in Perera et al. (2018b), with unitunicate, clavate to subclavate asci, 8-spored, ellipsoidal, 1-septate ascospores.

 In the phylogenetic tree of Norphanphou et al. (2022, Fig. 1), *Diaporthe rosae* clustered in the *D. sojae* species complex.

Typification details – Holotype, VIC 47191; ex-type, COAD 2913

Host – Rosa sp. (Rosaceae)

Distribution – South America (Brazil)

Notes – *Diaporthe rosiphthora* was introduced by Pereira et al. (2021). It was found on Rosa sp. in Viçosa, Brazil. This species has pycnidial, globose or somewhat distorted, 225–364 × 175–347 µm, scattered or aggregated conidiomata, cylindrical, densely aggregated, with 1–3 septate, 11.5–19 × 0.5–1.5 µm, straight to sinuous conidiophores, enteroblastic, ellipsoidal to fusiform, 5.5–7.1 × 1.5–2.6 µm, 2-guttules alpha conidia, with uncommon, filiform, 17–25 × 0.5–1 µm, straight or curved beta conidia, while gamma conidia not observed. The detailed descriptions and illustrations of the asexual morph for this species were given in Pereira et al. (2021). The sexual morph was not observed. The pathogenicity test confirmed that the species is a pathogenic fungus causing dieback in cultivated rose (*Rosa × hybrida*) (Pereira et al. 2021).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe rosiphthora* clustered in the *D. sojae* species complex.

Typification details – Holotype, BJFC-S890; ex-type, CFCC 50062, CCTCC AF2014028

Host – Juglans mandshurica (Juglandaceae)

Distribution – Asia (China)

Notes – *Diaporthe rostrata* was isolated from the branches and twigs of *Juglans mandshurica* in Gansu, China (Fan et al. 2015). The sexual morph of this species is characterized by immersed in bark, erumpent, ovoid to lenticular ascostromata, with 13–32 perithecia in brown to black enostromata, erumpent through the surface of bark, with conoid necks, and scattered, flask-shaped to spherical perithecia, 8-spored, unitunicate, clavate to cylindric-pedicel asci, 70–89.5 × 10–14.5 µm, contained 2-seriate, fusoid, 1–3-septate ascospores, 12.5–17 × 5–7 µm, 1–3-septate. The asexual morph on PDA is characterized by solitary, with single necks erumpent through the host bark conidiomata, conoid locules, with branched, hyaline conidiophores, and ellipsoidal, aseptate, inconspicuously 2-guttules, hyaline alpha conidia, 8–12 × 4–5.5 µm, while beta conidia not observed. Detailed descriptions of the sexual and asexual morphs for this species were given by Fan et al. (2015). The pathogenicity test confirmed that *D. rostrata* is a pathogen that causes dieback on branches and twigs of *Juglans mandshurica* (Fan et al. 2015).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe rostrata* clustered in the *D. carpini* species complex.

Diaporthe rubiae Fabre, Annls Sci. Nat., Bot., sér. 6 9: 46 (1879) [1878]

= *Phoma rubiae* Sacc., Michelia 1(no. 5): 526 (1879)

= *Phomopsis rubiae* (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 226 (1906)

Typification details – N/A

Host – Rubia peregrina (Rubiaceae)

Distribution – Europe (France)

Notes – *Diaporthe rubiae* was identified and described from the dried stems of *Rubia peregrina* in Vaucluse, France. The species has scattered or clustered perithecia, with 8-spored, lanceolate, sessile asci, 50–54 × 7–8 µm, and distichous oblong-lanceolate, constricted in the middle and subtly septate, 4-guttules ascospores, 15 × 4 µm. The detailed sexual morph description for the species is available in Saccardo (1891). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe rudis (Fr.) Nitschke, Pyrenomyc. Germ. 2: 282 (1870)

= *Aglaozpora rudis* (Fr.) Tul. & C. Tul., Select. fung. carpol. (Paris) 2: 165 (1863)
Diaporthe faginea (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 619 (1882)
= Phomopsis faginea (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 619 (1882)
= Phoma faginea (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 619 (1882)
≡ Sphaeria rudis Fr., Elench. Fung. (Griefswald) 2: 98. (1828)

Typification details – Holotype, UPS F-004948; epitype, CBS 109292; ex-epitype, AR3422

Hosts – Diaporthe rudis has a wide host range (See Udayanga et al. 2014, Farr & Rossman 2022)

Distribution – Africa (South Africa), Asia (China, Japan, Korea), Europe (Austria, Czech Republic, France, Germany, Greece, Italy, Latvia, Poland, Portugal, Serbia, Spain, Sweden, Switzerland, The Netherlands, Ukraine, United Kingdom), North America (Canada, British Columbia, USA), Oceania (Australia, New Zealand), South America (Brazil, Chile), (See Udayanga et al. 2014, Farr & Rossman 2022)

Notes – Udayanga et al. (2014) provided morphological descriptions for the asexual and sexual morphs of this species. Diaporthe faginea, D. macrostoma, D. medusaea, D. silvestris and D. viticola were synonymized under D. rudis (Udayanga et al. 2014b). Pathogenicity data for this species are available on various hosts, an example, it was reported as an important pathogen of grapevine, causing cankers and other dieback symptoms in all major viticulture regions worldwide (Van Niekerk et al. 2005, Úrbez-Torres et al. 2013, Kocanová et al. 2020).

In the phylogenetic tree of Norphanphou et al. (2022, Fig. 1), Diaporthe rudis clustered in the D. rudis species complex.

Typification details – Holotype, MFLU 18-0739; ex-type, MFLUCC18-1566 = JZB320005

Host – Rumex sp. (Polygonaceae)

Distribution – Europe (Italy)

Notes – Diaporthe rumicicola was described from a dead aerial stem of Rumex sp. in Italy. This species can be differentiated from its sister taxa D. foeniculina by its smaller alpha conidia (Hyde et al. 2019). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphou et al. (2022, Fig. 1), Diaporthe rumicicola clustered in the D. oncostoma species complex.

Diaporthe ryckholtii (Westend.) Nitschke, Pyrenomyc. Germ. 2: 319 (1870)

= Phoma ryckholtii Sacc., Syll. fung. (Abellini) 3: 70 (1884)
= Valsa ryckholtii (Westend.) J. Kickx f., Fl. Crypt. Flandres (Paris) 1: 323 (1867)
≡ Sphaeria ryckholtii Westend., Crypt. Flandres (Paris) 1: 323 (1859)

Typification details – Lectotype, GENT, anon. s.n.

Host – Symphoricarpus racemosa (Caprifoliaceae)

Distribution – Europe (Belgium, Germany, Italy, United Kingdom)

Notes – This species is an orthographic variant of D. rickholtii. Diaporthe ryckholtii was first described as Sphaeria ryckholtii and Nitschke (1870) identified it as D. ryckholtii. It was found on the trunk and rachis of Symphoricarpus racemosa. In the sexual morph, the species has stromata...
limited by black line, with globose, base flattened peritheciun, forming minute pustules, covered
by periderm, oblong, rarely clavate ascis, 60 × 9–12 μm, fusiform to subcylindrical, obtuse at both
ends, straight, 1-septate, constricted at the septum, 2–4-guttules, hyaline ascospores, 15–16 × 4–5
μm. Spermogonia was reported with fusoid, obtuse, straight, 2-guttules, hyaline spermatia, 6–8 ×
2.5 μm, long sterigmata (Nitschke 1870). A detailed description was provided by Nitschke (1870).
Sequence data is not available for this species.

Diaporthe saccarata (J.C. Kang, L. Mostert & Crous) Crous, Persoonia 31: 32 (2013)
Typification details – Holotype, PREM 57213; ex-type, CBS 116311
Host – Protea repens (Proteaceae)
Distribution – Africa (South Africa)
Notes – This species was introduced as Phomopsis saccarata, which was responsible for
causing canker dieback of Protea repens in Cape, South Africa (Mostert et al. 2001). The asexual
morph of this species was described in Mostert et al. (2001), with fusoid to ellipsoidal, 0–1-septate
alpha conidia, and aseptate, curved to hamate beta conidia. The sexual morph is undetermined.
Gomes et al. (2013) synonymized the species under Diaporthe saccarata.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe saccarata clustered in the D. oncostoma species complex.

Diaporthe saccardoana J. Kunze ex Sacc., Syll. fung. (Abellini) 1: 628 (1882)
Pyrenomycetaceae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 206 (1906)
≡ Diaporthe saccardoana var. moravica Petr. [as ‘saccardiana’], Fl. Bohem. Morav. exs., ser. II., Pilze: no. 614 (1913)
Typification details – Holotype, anon. s.n. (Kunze, Fung. selec. exsic. no. 123); lectotype, BPI 616992
Host – Ulmus minor (Syn. Ulmus campestris) (Ulmaceae)
Distribution – Europe (Germany)
Notes – Diaporthe saccardoana was found from stems of Ulmus minor in Germany. There is
no other record except the original description for this species in Saccardo (1882a). The species has
fusoid ascii, 90–100 × 9–10 μm, aparaphysate, fusoid, 1-septate, constricted at the septum, 4-
guttules ascospores, 15 × 4.5–5 μm (Saccardo 1882a). The asexual morph is undetermined.
Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, Mar. 1905; LPS, Spegazzini, Apr. 1905
Host – Saccharum officinarum (Poaceae)
Distribution – South America (Argentina: Jujuy)
Notes – The species was found on rotten culms of Saccharum officinarum in Jujuy,
Argentina. Diaporthe sacchari is characterized by having loosely gregarious perithecia, with
carbonaceous ostiole, fusoid to subclavate ascis, 65–90 × 14–18 μm, aparaphysate, and subfusoid,
obtuse on both sides, 1-septate in the middle, 1-guttules, hyaline ascospores, 20–30 × 5–7 μm
(Spegazzini 1909). Detailed descriptions for this species are available in Spegazzini (1909) and
Saccardo & Trotter (1913). The asexual morph is undetermined. Sequence data is not available
for this species.

Diaporthe sachalinensis Sacc. [as ‘sachalinensis’], Atti del Congr. bot. di Palermo: 46–60 (1902)
Typification details – N/A
Host – Polygonum sachalinense (Polygonaceae)
Distribution – Europe (France)
The authors were unable to find the original description of this species. However, Saccardo & Saccardo (1905) provided a detailed description of *Diaporthe sechalinensis*, which has a slightly different name. *Diaporthe sachalinensis* (as *'sechalinensis'*) has gregarious, membranaceous perithecia, gray inside, with conical to cylindrical ostiole, fusoid asci, $48 \times 8 \, \mu m$, aparaphysate, fusiform, with short apiculate on both sides, 4-guttules, hyaline ascospores, $13–15 \times 3–4 \, \mu m$ (Saccardo & Saccardo 1905). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 54669b (includes ex-type)
Host – *Helianthus annuus* (Asteraceae)
Distribution – Oceania (Australia)
Notes – This species was isolated from the petiole of *Helianthus annuus* in Queensland, Australia. It produced abundant pycnidia on cultures, and abundant, fusiform, rounded at the apex, obconically truncate at the base, hyaline alpha conidia, while beta conidia not observed (Thompson et al. 2015). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe sackstonii* clustered in the *D. sojae* species complex.

Typification details – Holotype, VPRI 32789 (includes ex-type); ex-type, BRIP 54825
Host – *Salix purpurea* (Salicaceae)
Distribution – Oceania (Australia)
Notes – Tan et al. (2013) introduced this species based on the morphology of asexual morph and molecular data. *Diaporthe salicicola* produced abundant, cylindrical to oval, rounded at the apex, slightly attenuated at the base, hyaline alpha-conidia, while beta and gamma conidia were not observed. The sexual morph is undetermined. This species failed to produce perithecia or pycnidia on any of the media (PDA/OMA/wheat straw pieces on WA) after 4 weeks of incubation (Tan et al. 2013).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe salicicola* clustered in the *D. rudis* species complex.

Diaporthe salicis Nitschke, inFuckel, Fungi rh Banian exsic., fasc. 20: no. 1987 (1864)
Typification details – N/A
Host – N/A
Distribution – N/A
Notes – There is no other record except the original description for this species. However, the authors were unable to find the original description of this species. Sequence data is not available for this species.

Typification details – Holotype, Spegazzini, Sept. 1904
Host – *Atriplex pamparum* (Amaranthaceae)
Distribution – South America (Argentine)
Notes – *Diaporthe salinicola* was introduced by Spegazzini (1912) from rotten stems of *Atriplex pamparum* in Buenos Aires, Argentina. The species is characterized by immersed, globose perithecia, 200–250 µm in diam., with long ostiole, 50–8 µm, 8-spored, pointed on both sides, 5 × 8 µm, distichous, subacute on both sides, often 2-guttules, hyaline ascospores. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 21357

Distribution – Asia (India, Macau)

Notes – Vrijmoed et al. (1994) introduced this species based on morphological characteristics on the intertidal wood of Kandelia candel. Chethana et al. (2021) provided the sequence data for this species as well as established the asexual-sexual linkage of the species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe salsuginosa clustered in the D. biconispora species complex.

Diaporthe samaneae Monkai & S. Lumyong, in Monkai et al., Journal of Fungi 9(6): 14 (2023)

Typification details – Holotype, CMUB39997; ex-type, SDBR-CMU470

Host – Samanea saman (Fabaceae)

Distribution – Asia (Thailand)

Notes – The species was introduced by Monkai et al. (2023). It was found as a saprobe on dead wood of Samanea saman in Chiang Mai, Thailand. Phylogenetically, Diaporthe samaneae formed a distinct lineage within D. oncostoma species complex, but closely related to D. inconspicua and D. pseudoinconspicua (Monkai et al. 2023). However, Diaporthe samaneae differs from D. inconspicua and D. pseudoinconspicua in having longer alpha conidia, (7–11 × 1.8–2.8 vs. 5.5–6.5 × 1.5–2 μm and 5–8.5 × 2–3.5 μm) (Bezerra et al. 2018, Crous et al. 2018, Monkai et al. 2023). Furthermore, D. samaneae was reported as a saprobe, while D. inconspicua and D. pseudoinconspicua were reported as endophytes (Bezerra et al. 2018, Crous et al. 2018b, Monkai et al. 2023). A detailed description and illustration of D. samaneae were given by Monkai et al. (2023).

Diaporthe sasanicola W. Phillips & Plowr., Grevillea 3(no. 27): 126 (1875)

= Phoma pterophila Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 377 (1870) [1869–70]

= Phomopsis pterophila Nitschke ex Died., Annls mycol. 9(1): 28 (1911)

= Sphaeria pterophila Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 377 (1870) [1869–70]

Typification details – Holotype, K(M), anon., Jan 1875

Host – Fraxinus excelsior (Oleaceae)

Distribution – Europe (United Kingdom)

Notes – There is no other record except the original description for this species in Phillips & Plowright (1875) and Saccardo (1882a). The species is characterized by immersed, minute perithecia, covered by a circumscribed thin, black stroma, prominent ostiole, fusoid asci, 75 × 10 μm, and acuminate, quadranucleate, hyaline ascospores, 17–18 × 5 μm (Saccardo 1882) Sequence data is not available for this species.

Typification details – N/A

Host – Salix alba var. vitellina (Salicaceae)

Distribution – Asia (Brunei)

Notes – There is no other record except the original description for this species in Saccardo & Malbranche (1883) which is from stems of Salix alba var. vitellina. This species is characterized by fusoid asci, 55–60 × 12 μm, aparaphysate, fusoid, 1-septate, gently constricted, 2-guttules, hyaline ascospores, 15–18 × 5 μm, with a short appendage on both sides (Saccardo & Malbranche 1883). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype. CFCC 55344; ex-type, FJ16
Host – *Sapindus mukorossi* (Sapindaceae)
Distribution – Asia (China)

Notes – *Diaporthe sapindicola* was introduced by Si et al. (2022). It was found on diseased leaves of *Sapindus mukorossi* or soapberry in Fujian Province, China. The symptoms initially appeared as irregular, small, yellow spots which became dark brown at the center of lesions. The pathogenicity test was performed by Si et al. (2022). The asexual morph of this species produced clavate or ellipsoidal, single-celled, 2-guttules, hyaline alpha conidia on diseased tissues. Beta and gamma conidia were observed on PDA. Phylogenetic analysis based on ITS, *tef1-a, tub2, his*, and *cal* sequences supported this species as a distinct species in *Diaporthe* (Si et al. 2022).

Diaporthe sarmenticia Sacc., Michelia 1(no. 4): 386 (1878)
 = *Phoma sarmentella* Sacc., Michelia 2(no. 8): 618 (1882)
 = *Phomopsis sarmentella* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 277 (1906)
Typification details – Holotype, PAD, Saccardo, Apr. 1874; PAD, Saccardo, Oct. 1877
Host – *Humulus lupulus* (Cannabaceae)
Distribution – Europe (Italy)

Notes – *Diaporthe sarmenticia* was introduced by Saccardo (1878) from dead *Humulus lupulus* in Italy. This species is characterized by gregarious perithecia, subcylindrical asci, 60–69 × 7–8 µm, fusiform, hyaline ascospores, 13–16 × 3–4 µm (Saccardo 1878). The asexual morph is undetermined. Detailed descriptions for this species are available in Saccardo (1878) and Saccardo (1882a). Sequence data is not available for this species.

Diaporthe sarothamni Auersw. ex Nitschke, Pyrenomyc. Germ. 2: 303 (1870)
 = *Diaporthe baccharidis* (Cooke) Sacc., Syll. fung. (Abellini) 1: 692 (1882)
 = *Diaporthe baccharidis var. gallica* Brunaud, J. d’hist. nat. Bordeaux et Sud-Ouest 7: 2 [repr.] (1888)
 = *Diaporthe baccharidis* var. *baccharidis* Cooke, Grevillea 7(no. 42): 53 (1878)
 = *Phoma sarothamni* Sacc., Syll. fung. (Abellini) 3: 68 (1884)
 = *Sphaeria baccharidis* Cooke, Grevillea 7(no. 42): 53 (1878)
 = *Valsaria sarothamni* Auersw., in Nitschke, Pyrenomyc. Germ. 2: 303 (1870)
Typification details – N/A
Host – *Cytisus scoparius* (Syn. *Sarothamnus scoparius*) (Fabaceae)
Distribution – Europe (Germany, United Kingdom)

Notes – *Diaporthe sarothamni* was introduced by Nitschke (1870) from stems of *Sarothamnus scoparius*. This species is characterized by large perithecium, with thick ostiole, 8-spored, subcylindrical to narrowly oblong, sessile, 60–69 × 7–8 µm, fusiform, shape on both sides, straight, 2–4-celled, not constricted in the middle, subhyaline ascospores, 14–15 × 3–4 µm. *Diaporthe sarothamni* also has numerous and densely scattered spermatia, embedded in the inner cortex, with fusiform to often subcylindrical, straight, obtuse on both sides, not rarely bigutulate, subhyaline spermatia, 8–10 or rarely 12 × 2 µm. Stylospores are thinly filiform, usually curved, 30–33 × 1 µm (Nitschke 1870). Detailed descriptions for this species are available in Nitschke (1870) and Saccardo (1882a). Sequence data is not available for this species.

Diaporthe scabra Nitschke, Pyrenomyc. Germ. 2: 310 (1870)
Typification details – N/A
Host – *Platanus × acerifolia* (Platanaceae)
Distribution – Europe (Germany)
Notes – The species was found from stems of *Platanus × acerifolia* in Germany and introduced by Nitschke (1870). This species is characterized by densely scattered perithecia, nestling in the parenchyma of the inner cortex, with a short neck, ostiolate, clavate to subcylindrical asci, 60 × 9–10 µm, fusiform, 1-septate, not constricted, 4-guttules, subhyaline ascospores, 10–12 × 3 µm. Detailed descriptions for this species are available in Nitschke (1870) and Saccardo (1882a). The asexual morph is undetermined.

The strain CBS 127746 was misidentified as *D. scabra* (Gomes et al. 2013). Thus, we keep *D. scabra* as a single species within *Diaporthe* until sequence data from the type specimen is available.

Diaporthe scandens Sacc. & Speg., Michelia 1(no. 4): 389 (1878)

= *Diaporthe tami* Speg., in Thümen, Mycoth. Univ., cent. 17: no. 1657 (1880)

= *Phomopsis tamicola* Cooke, Grevillea 13(no. 68): 95 (1885)

= *Phomopsis tamicola* (Cooke) Traverso, Fl. Ital. crypt. (Florence) 2(1): 223 (1906)

Typification details – Holotype, PAD, Saccardo, 1878

Hosts – *Dioscorea communis* (Syn. *Tamus communis*), *Tamus* sp. (Dioscoreaceae)

Distribution – Europe (Italy, Portugal, United Kingdom)

Notes – The species was found in rotten stems of *Dioscorea communis* in Italy, and was introduced by Saccardo (1878). This species is characterized by fusoid to clavate asci, 40–50 × 6–6.5 µm, and oblong to fusoid, obtuse on both sides, 1-septate, 4-guttules, hyaline ascospores. The detailed descriptions of the sexual morph were given in Saccardo (1878) and Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BJFC-S 1370; ex-type, CFCC 51988

Host – *Schima superba* (Theaceae)

Distribution – Asia (China)

Notes – Yang et al. (2021a) introduced this species from a leaf spot on *Schima superba* in Ganzhou, China. Alpha and beta conidia were reported for this species. The descriptions and illustrations of its asexual morph were provided by Yang et al. (2021a), while the sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe schima* clustered in the *D. arecae* species complex.

Diaporthe schini R.R. Gomes, Glienke & Crous, Persoonia 31: 32 (2013)

Typification details – Holotype, CBS H-21093; ex-type, CBS 133181

Host – *Schinus terebinthifolia* (Anacardiaceae)

Distribution – South America (Brazil)

Notes – *Diaporthe schini* was isolated as an endophyte on *Schinus terebinthifolia* in Paraná, Brazil, and it was introduced based on morphology and molecular data (Gomes et al. 2013). This species produced multilocular conidiomata, ostiolate, prominent neck, curved or hamate, smooth, hyaline beta conidia. Alpha and gamma conidia were not observed (Gomes et al. 2013). The descriptions and illustrations were provided by Gomes et al. (2013), while the sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe schini* clustered in the *D. sojae* species complex.

Typification details – Holotype, BJFC-S 1370; ex-type, CFCC 51988

Host – *Schisandra chinensis* (Schisandraceae)

Distribution – Asia (China)
Notes – Yang et al. (2018b) introduced this species based on morphological and molecular data from twigs and branches of *Schisandra chinensis* in Heilongjiang, China. *Diaporthe schisandrae* differs from its sister taxa *D. rostrata* by having smaller locules and narrower alpha conidia, while differs from *D. juglandicola* by having bigger alpha conidia (Yang et al. 2018b). The detailed descriptions and illustrations were provided by Yang et al. (2018b), while the sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe schisandrae* clustered in the *D. carpini* species complex.

Typification details – Holotype, MFLU 15-1279
Host – *Schoenus nigricans* (Cyperaceae)
Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced this species based on DNA extracted from fruiting bodies. The descriptions and illustrations were provided by Dissanayake et al. (2017b), while the sexual morph is undetermined. *Diaporthe schoeni* is phylogenetically related to *D. acericola* (Dissanayake et al. 2017b), however, it can be differentiated by having slightly acute and tapered at both ends conidia, while *D. acericola* has obtuse at both ends. Moreover, *D. schoeni* has smaller conidiomata and larger conidia than those of *D. acericola* (Dissanayake et al. 2017b).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe schoeni* clustered in the *D. sojae* species complex.

≡ *Phomopsis sclerotioides* Kesteren, Neth. Jl Pl. Path. 73: 115 (1967)
Typification details – Holotype, IMI 151828, PD 68/690; ex-type, CBS 296.67
Hosts – *Citrus lanatus*, *Cucumis sativus* (Cucurbitaceae)
Distribution – Asia (Japan), Europe (The Netherlands)
Notes – Van Kesteren (1967) introduced this taxon to accommodate a root rot pathogen. Udayanga et al. (2012b) epitypified this species and provided sequence data. The descriptions and illustrations of this species were provided by Van Kesteren et al. (1967), while the sexual morph is undetermined. Pathogenicity tests confirmed it as a pathogen of Cucurbitaceae (Shishido et al. 2014, Fukada et al. 2018).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe sclerotioides* clustered in the *D. sojae* species complex.

Diaporthe scobina Nitschke, Pyrenomyc. Germ. 2: 293 (1870)
≡ *Sphaeria scobina* (Nitschke) Cooke, Grevillea 3(no. 26): 67 (1874)
Typification details – CBS 251.38 (Reference specimen)
Host – *Fraxinus excelsior* (Oleaceae)
Distribution – Europe (Scotland, Poland)
Notes – The species was found on the living and dead twig of *Fraxinus excelsior*. *Diaporthe scobina* is characterized by densely scattered perithecia, with a short neck, cylindrical ostiole, fusiform to clavate ascii, 51–60 × 9 μm, oblong or fusiform to subcylindrical, obtuse on both ends, usually straight, 1-septate, 4-guttules, not constricted, subhyaline ascospores, 11–12 × 4 μm (Nitschke 1870, Saccardo 1882a). Detailed sexual morph descriptions of this species are available in Nitschke (1870) and Saccardo (1882a). The asexual morph is undetermined. Gomes et al. (2013) established a reference culture for *Diaporthe scobina* and provided sequence data.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe scobina* clustered in the *D. scobina* species complex.

Diaporthe scobinoides Schulzer & Sacc., Hedwigia 23: 43 (1884)
- Typification details – N/A
- Host – *Fraxinus excelsior* (Oleaceae)
- Distribution – Europe (Croatia)
- Notes – There is no other record except the original description for this species in Schulzer & Saccardo (1884) from dead stems of *Fraxinus excelsior* in Slavonia, Croatia. This species is characterized by gregarious perithecia, erumpent ostiole, fusoid asci, 15 × 8 µm, oblong to fusiform, constricted at the middle, 4-guttules, hyaline ascospores, 10–14 × 3 µm (Schulzer & Saccardo 1884). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – Holotype, BRIP 66528 (includes ex-type)
- Host – *Macadamia* sp. cv. “Nelmak” (Proteaceae)
- Distribution – Africa (South Africa)
- Notes – This species was introduced from the husk rot of *Macadamia* sp. in Mpumalanga, South Africa. The morphological description of its asexual morph was given by Wrona et al. (2020). The sexual morph is undetermined. Pathogenicity data for *Macadamia* is available in Wrona et al. (2020) and it indicated that *D. searlei* caused Phomopsis husk rot on macadamia cultivars HAES 344 and HAES 816.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe searlei* clustered in the *D. arecae* species complex.

Diaporthe semiimmersa Nitschke, Pyrenomyc. Germ. 2: 253 (1870)
- = *Phoma semiimmersa* Sacc., Michelia 2(no. 6): 97 (1880)
- = *Phomopsis semiimmersa* (Sacc.) Traverso [as ‘semiimmersa’], Fl. ital. crypt. (Florence) 2(1): 242 (1906)
- Typification details – N/A
- Host – *Rosa canina* (Rosaceae)
- Distribution – Europe (Italy), South America (Argentina)
- Notes – This species was found on the stems of *Rosa canina*. It is characterized by minute perithecia, with short and subconical ostiole, oblong to clavate, sessile asci, 56–60 × 9–13 µm and fusiform, obtuse, straight, 1-septate, constricted, subhyaline ascospores, 14–16× 3.5–5 µm. Detailed descriptions for this species are available in Nitschke (1870) and Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe semiinsculpta Sacc., Syll. fung. (Abellini) 1: 657 (1882)
- = *Sphaeria semiimmersa* Berk. & M.A. Curtis, Grevillea 4(no. 32): 146 (1876)
- Typification details – Holotype, Ravenel 5628
- Host – *Crataegus oxyacantha* (Rosaceae)
- Distribution – North America (USA)
- Notes – *Diaporthe semiinsculpta* was introduced as *Sphaeria semiimmersa* from dead stems of *Crataegus oxyacantha*. Saccardo (1882a) synonymized it as *Diaporthe semiinsculpta*. The species is characterized by having immersed subcylindrical at above perithecia, and oblong, curved, 4-nucleated spores (Saccardo 1882a). Sequence data is not available for this species.

- Typification details – Holotype, LPS, Spegazzini, Feb. 1892
- Host – *Senecio brasiliensis* (Asteraceae)
Distribution – South America (Argentina)

Notes – The species was found from a dead stem of Senecio brasiliensis in Buenos Aires, Argentina. This species is characterized by stromata, with immersed perithecia, carbonaceous ostiole, fusoid to clavate asci, a paraphysate, and cylindrical to subfusoid, obtuse on both ends, 1-septate at the middle, subconstricted, 2-guttules, hyaline ascospores, 10–12 × 3–4 μm. The asexual morph is undetermined. There is no other record except the original description for this species in Spegazzini (1898). Sequence data is not available for this species.

Typification details – Holotype, BJFC-S 1370; ex-type, CFCC 51636
Hosts – Citrus grandis cv. “Tomentosa” (Rutaceae), Senna bicapsularis (Fabaceae)
Distribution – Asia (China)
Notes – Yang et al. (2017a) introduced this species from infected branches and twigs of Senna bicapsularis in Guangxi, China. Diaporthe sennae can be distinguished from its sister taxon D. pascoei by having longer alpha conidia and shorter beta conidia (Yang et al. 2017a). The descriptions and illustrations of its asexual morph were provided by Yang et al. (2017a). The sexual morph is undetermined. Pathogenicity data are unavailable for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe sennae clustered in the D. arecae species complex.

Typification details – Holotype, BJFC-S1368; ex-type, CFCC 51634
Host – Senna bicapsularis (Fabaceae)
Distribution – Asia (China)
Notes – Yang et al. (2017a) introduced this species from infected branches and twigs of Senna bicapsularis in Guangxi, China. Beta conidia were not reported by Yang et al. (2017a). The sexual morph is undetermined. Pathogenicity data are unavailable for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe sennicola clustered in the D. eres species complex (= D. alnea species complex).

= Phoma seposita Sacc., Mycotheca veneta 1: no. 16 (1874)
= Phomopsis seposita (Sacc.) Traverso, Fl. ital. crypt. (Florence) 2(1): 262 (1906)
Typification details – N/A
Host – Wisteria sinensis (Fabaceae)
Distribution – Europe (Italy)
Notes – The species was found from stems of Wisteria sinensis in Italy. This species is characterized by oblong to fusoid asci, and obtuse on both ends, 1-septate, constricted, 4-guttules, hyaline ascospores, 16–18 × 5–6 μm. Spermogonia are globose, nestling in the outer bark, with ellipsoid to oblong spermatia (Saccardo 1875). There is no other record except the original description for this species in Saccardo (1875). Sequence data is not available for this species.

Typification details – Holotype, BRIP 55665b (included ex-type)
Hosts – Helianthus annuus (Asteraceae), Lupinus albus (Fabaceae), Vitis sp. (Vitaceae)
Distribution – Oceania (Australia)
Notes – Diaporthe serafiniae was isolated from seeds of Helianthus annuus, in Queensland, Australia. The species produced multilocular conidiomata on PDA, OMA and WSA, with cream conidial droplets exuded from most ostioles, with abundant, fusiform, 2-guttules, hyaline alpha conidia, beta conidia not observed (Thompson et al. 2015). The detailed asexual morph description of this species is available in Thompson et al. (2015). Lesuthu et al. (2019) reported D. serafiniae on grapevines in South Africa.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe serafiniae* clustered in the *D. sojae* species complex.

Diaporthe shaanxiensis C.M. Tian & Q. Yang, MycoKeys 67: 13 (2020)
Typification details – Holotype, BJFC-S1674; ex-type, CFCC 53106; paratype, BJFC-S1675
Host – On branches of Liana
Distribution – Asia (China)
Notes – This species was introduced from branches of liana as an endophyte in Ningshan, China. It has an obvious ostiole per disc, and hyaline, filiform beta conidia (Yang et al. 2020). A detailed description of the asexual morph is available in Yang et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe shaanxiensis* clustered in the *D. varians* species complex.

Typification details – Holotype, BRIP 64534a
Host – *Chloris gayana* (Poaceae)
Distribution – Oceania (Australia)
Notes – *Diaporthe shawiae* was introduced by Tan & Shivas (2022) based on molecular data. It was found from *Chloris gayana* in Queensland, Australia. In phylogenetic tree based on ITS, tub2, and *tef1-α* sequences, *Diaporthe shawiae* formed at the basal of the clade contained *D. alangii, D. celtidis, D. etinsideae, D. hubeiensis*, *D. tectonae*, and *D. tulliensis* (Tan & Shivas 2022), most of those are species members of *D. sojae* species complex in Norphanphoun et al. (2022, Fig. 1).

Diaporthe sheariana Petr., Sydowia 6(5–6): 365 (1952)
Typification details – Holotype, Shear & Stevens 406
Host – *Acacia koa* (Fabaceae)
Distribution – North America (USA)
Notes – The species was found from dried branches of *Acacia koa* in Hawaii, USA. *Diaporthe sheariana* is characterized by subfuscoid or cylindrical to clavate asci, 60–75 × 10–13 µm, very few pseudoparaphyses, and oblong to fusoid, obtuse on both sides, 1-septate at the middle, slightly constricted or not, hyaline ascospores, 17–25 × 5–7 µm, with setae or appendage on both sides, 5–8 long µm (Petrak 1952). There is no other record except the original description for this species (Petrak 1952). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, CNUCC 201905; ex-type, CFCC 53975
Host – *Juglans regia* (Juglandaceae)
Distribution – Asia (China)
Notes – The asexual morph description of this species is available in Zhou & Hou (2019) from twigs of *Juglans regia* in Hubei, China. *Diaporthe shennongjiaensis* produced solitary or aggregated, slightly erumpent conidiomata on PDA, white to cream conidial drops exuding from the ostioles, ellipsoidal or oval, aseptate, hyaline, 0–3-guttules (usually 2-guttules) alpha conidia, filiform, curved at both ends, aseptate, hyaline beta conidia, while gamma conidia were not observed (Zhou & Hou 2019). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe shennongjiaensis* clustered in the *D. eres* species complex (= *D. alnea* species complex).
 Typification details – Holotype, MFLU 12-0121; ex-type, MFLUCC 10-0573a
 Hosts – *Dasy.maschalon* sp. (Annonaceae), *Pandanus* sp. (Pandanaceae)
 Distribution – Asia (Thailand)
 Notes – The species was found from diseased leaves of *Dasy.maschalon* sp. in Chiang Rai, Thailand by Udayanga et al. (2012a). Later, it was also found as an endophytic fungus from *Pandanus* sp. in Thailand by Tibpromma et al. (2018). *Diaporthe siamensis* has parapathys among conidiophores and intermediate gamma conidia. A detailed description of the asexual morph is available in Udayanga et al. (2012a). The sexual morph is undetermined. Pathogenicity tests revealed that *D. siamensis* was pathogenic to the fruits of *Citrus sinensis* (Cui et al. 2020).

 In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe siamensis* clustered in the *D. sojae* species complex.

 Typification details – N/A
 Host – *Vitis vinifera* (Vitaceae)
 Distribution – Europe (Italy)
 Notes – There is no other record except the original description for this species in Saccardo & Berlese (1885) from stems of *Vitis vinifera*. Sequence data is not available for this species.

Diaporthe silvicola N. Jiang, in Jiang, Voglmayr, Piao & Li, MycoKeys 85: 50 (2021)
 Typification details – Holotype, CAF 800006; ex-type, CFCC 54191, M79
 Host – *Fraxinus excelsior* (Oleaceae)
 Distribution – Europe (The Netherlands)
 Notes – *Diaporthe silvicola* was introduced by Jiang et al. (2021). It was found on branches of *Fraxinus excelsior* in The Netherlands. The species was reported based on morphological characters of asexual morph and multigene phylogeny (ITS, *cal*, *his3*, *tef1*-a, and *tub2*). Sexual morph not observed. The morphological species was described with cylindrical, hyaline, slightly brown, phialides, unbranched conidiophores, fusiform to oval, aseptate, multi-guttules, hyaline alpha conidia, beta conidia was not observed (Jiang et al. 2021). Detailed description and illustration were given by Jiang et al. (2021).

 In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe silvicola* was initially placed within the *D. amygdali* species complex (= *D. pustulata* species complex). *Diaporthe silvicola* clustered with *D. pustulata* (Norphanphoun et al. 2022). However, *D. pustulata* has been recognized as a distinct species separate from the *D. amygdali* species complex based on GMYC, PTP analyses, and phylogenetic network (Hilário et al. 2021a). Consequently, it can be concluded that *D. silvicola* does not belong to the *D. amygdali* species complex.

Diaporthe simplicior Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 154 (1903)
 Typification details – N/A
 Host – *Populus tremula* (Salicaceae)
 Distribution – Europe (Luxembourg)
 Notes – *Diaporthe simplicior* was found from stems of *Populus tremula* in Luxembourg. This species is characterized by gregarious stromata, 4–6 perithecia, prominent ostiole, clavate to fusiform ascii, 43–48 × 5.5–8 μm, and oblong to almost cylindrical, obtuse, straight, 1-septate at the middle, somewhat constricted, 2-guttules in each cell, hyaline ascospores, 10–13 × 2.5–3 μm (Feltgen 1903). The asexual morph is undetermined. There is no other record except the original description for this species in Feltgen (1903) Sequence data is not available for this species.

 Typification details – N/A
 Host – *Rosa canina* (Rosaceae)
Distribution – South America (Argentina)

Notes – The species was found from stems of Rosa canina in Argentina. Diaporthe simulans is characterized by gregarious, 2–5 perithecia, cylindrical to conoid ostiole, piercing the unchanged epidermis, fusoid asci, 60 × 8 µm, and obtusely fusoid, truncated on both sides, 1-septate, 4-guttules, hyaline ascospores, 14–15 × 4.5 µm (Saccardo 1875). A detailed description of the sexual morph is available in Saccardo (1875) Sequence data is not available for this species.

Typification details – Holotype, XC01-ZJXS20170819; ex-type, ZJUP0033-4 (Zhejiang University)

Host – *Amaranthus* sp. (Amaranthaceae)

Distribution – Asia (China)

Notes – Feng et al. (2019) introduced this species from *Amaranthus* sp. in Zhejiang, China. In Feng et al. (2019), Diaporthe sinensis is phylogenetically closest to *D. lusitanicae*. However, *D. sinensis* can be distinguished by its larger ellipsoid alpha conidia, and small globose pycnidia, while *D. lusitanicae* has small oval to fusoid alpha conidia and larger globose pycnidia (Feng et al. 2019).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe sinensis* clustered in the *D. sojae* species complex.

Diaporthe skimmiae Grove, J. Bot., Lond. 71: 257 (1933)

Typification details – N/A

Host – *Skimmia japonica* (Rutaceae)

Distribution – Europe (United Kingdom)

Notes – *Diaporthe skimmiae* was found from dead branches of *Skimmia japonica* in the United Kingdom. Detailed information on this species can be found in Bisby & Mason (1940) and Cannon et al. (1985). Sequence data is not available for this species.

Diaporthe smilacicola Y.Q. Zhu & Ning Jiang, in Zhu, Ma, Xue, Piao, Li & Jiang, MycoKeys 95: 221 (2023)

Typification details – Holotype, CAF 800070; ex-type, CFCC 54582, CFCC 58764, CFCC 58765

Host – *Smilax glabra* (Smilacaceae)

Distribution – Asia (China)

Notes – *Diaporthe smilacicola* was reported by Zhu et al. (2023). It was found from leaf spots of *Smilax glabra* in Hunan, China. The species was reported based on morphological characters of its asexual morph and molecular phylogeny of combined genes (ITS, *cal, his3, tef1-a, tub2*). The phylogenetic placement indicated that it is a distinct species within *D. arecae* species complex (Norphanphoun et al. 2022, Zhu et al. 2023). Sexual morph not observed. The morphological species was described with cylindrical, phialidic, slightly tapering towards the apex, hyaline, conidiogenous cells, ellipsoid to oblong, ellipsoidial, aseptate, guttulate, both ends obtuse, hyaline, alpha conidia, beta conidia was not observed. A detailed description was given by Zhu et al. (2023).

Diaporthe sociabilis Nitschke, Pyrenomyc. Germ. 2: 263 (1870)

= *Diaporthe sociabilis* var. *sambuci* (Ellis & Everh.) Wehm., Monogr. Gen. *Diaporthe*

Typification details – N/A

Host – *Morus rubra* (Moraceae)

Distribution – Europe (Germany)
Notes – *Diaporthe sociabilis* was found from dead stems of *Morus rubra* in Germany. This species is characterized by minute perithecia, with very short ostiole, clavate to subcylindrical, sessile asci, 66–80 × 8–10 µm, and fusiform, obtuse at both ends, 1-septate, slightly constricted at the middle, 4-guttules, hyaline ascospores, 17–21 × 5 µm (Nitschke 1870). Detailed information on this species can be found in Nitschke (1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe sociata (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 614 (1882)
≡ *Valsa sociata* Cooke & Ellis, Grevillea 4(no. 29): 11 (1875)
Typification details – N/A
Host – *Styrax benzoin* (Styracaceae)
Distribution – North America (USA)
Notes – *Diaporthe sociata* was found from stems of *Styrax benzoin* in the USA. This species is characterized by clavate asci and elliptical, hyaline, 1-septate ascospores, 12 × 4 µm. A detailed description was given in Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

≡ *Phomopsis sojae* Lehman, J. Elisha Mitchell scient. Soc. 38: 13 (1922)
Typification details – Lectotype, BPI 615412; epitype BPI 748002; ex-epitype FAU635
Hosts – This species is known to infect numerous host plants such as alfalfa stems, *Abelmoschus esculentus* (Malvaceae), *Arachis hypogaea* (Fabaceae), *Camptotheca acuminata* (Nyssaceae), *Capsicum annuum*, *Capsicum frutescens* var. *grosso* (Solanaceae), *Citrus* sp. (Rutaceae), *Cucumis melo* (Cucurbitaceae), *Glycine max* (Fabaceae), *Helianthus annuus* (Asteraceae), *Lespedeza sp.* (Fabaceae), *Lycopersicon esculentum* (Solanaceae), *Mellilotus* sp. (Fabaceae), *Phaseolus lunatus* (Fabaceae), *Phaseolus vulgaris* (Fabaceae), *Stokesia laevis* (Asteraceae), *Strophostyles helvola* (Fabaceae), *Vigna sinensis* (Leguminosae), *Vitis vinifera* (Vitaceae) (Udayanga et al. 2015, Dissanayake et al. 2015, Farr & Rossman 2022).
Distribution – Africa (Egypt, Malawi, Nigeria, Senegal, Sierra Leone, South Africa, Tanzania, Zaire), Asia (China, Colombia, India, Israel, Japan, Korea, Malaysia, Nepal, Taiwan), Europe (Croatia, France, Hungary, Italy, Yugoslavia), North America (Canada, Cuba, Puerto Rico, USA), North Atlantic Ocean (Bermuda), Oceania (Australia, New Zealand), Russia, South America (Argentina, Brazil, Guyana) (Udayanga et al. 2015, Dissanayake et al. 2015, Farr & Rossman 2022), this species has a wide and extensive distribution.
Notes – Udayanga et al. (2015) epitypified this species and identified it as a species complex. Detailed descriptions of the asexual and sexual morphs are available in Lehman (1923) and Udayanga et al. (2015). Pathogenicity data on different hosts are available in Dissanayake et al. (2015), Udayanga et al. (2015) and Du et al. (2021).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe sojae* clustered in the *D. sojae* species complex. Regarding the *D. sojae* species complex observed in the same study, there is a possibility that this complex may comprise multiple complexes or encompass several distinct and well-delimited species. Considering the intricate nature of this group, it would be valuable to conduct further investigations using GMYC, PTP analyses, and phylogenetic network approaches. These methods can provide insights into the genetic relationships and boundaries of closely related taxa, helping to clarify the structure of the *D. sojae* complex.

Typification details – Holotype, LPS, Spegazzini, 1905-1908
Host – *Solanum verbascifolium* (Solanaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe solani-verbascifolii* was from dead branches of *Solanum verbascifolium* in Buenos Aires, Argentina. The species is characterized by immersed perithecia, ostiolate, subfusoid asci, 40–60 ×8–12 μm, ap paraphysate, elliptical, obtuse on both sides, 1-septate at the middle, 4-guttules, hyaline ascospores, 14–16 ×3–6 μm. Detailed descriptions of the sexual morph are available in Spegazzini (1909) and Saccardo & Trotter (1913). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe sophorae Sacc., Michelia 1(no. 4): 384 (1878)

= *Phoma sophorae* f. *gymnocladi* Sacc. & Scalia, Bolm Soc. broteriana, Coimbra, sér. 1 19: 163 (1903) [1902]

= *Phoma sophorae* Sacc., Fungi venet. nov. vel. Crit., Sér. 5: 202 (1878)

= *Phomopsis sophorae* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 260 (1906)

Typification details – Holotype, PAD, Saccardo, 1877 (Saccardo, Fung. ven., ser. V, 202)

Host – *Sophora japonica* (Fabaceae)

Distribution – Europe (Italy)

Notes – *Diaporthe sophorae* was found from branches of *Sophora japonica* in Italy. The species is characterized by immersed perithecia with short, thick, cylindrical ostiole, clavate to cylindrical, sessile asci, 50–60 ×8–10 μm, paraphysate, and fusoid, 1-septate, hyaline ascospores, 12–15 ×5–6 μm. There is no other record except the original description for this species in Saccardo (1878). The asexual morph is undetermined. Sequence data is not available for this species.

In the ITS phylogeny of Norphanphoun et al. (2022, Fig. 3), this species is grouped within *D. oncostoma* species complex. Multi-loci are needed to confirm the status of this species.

Diaporthe sorbariae Nitschke, Pyrenomyc. Germ. 2: 261 (1870)

= *Diaporthe sorbariae* f. *amorphae* Rehm, Mycotheca Marchica, cent. 36–38: no. 3739 (1892)

Typification details – N/A

Host – *Sorbaria sorbifolia* (Syn. *Spiraea sorbifolia*) (Rosaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe sorbariae* was introduced and found in the dead trunk of *Sorbaria sorbifolia* (Nitschke 1870). This species is characterized by immersed perithecia with short, thick, cylindrical ostiole, clavate to cylindrical, sessile asci, 50–56 ×6.5–7 μm, and fusiform, 1-septate, not constricted, 2–4-guttules, hyaline ascospores, 14–17 ×3–4 μm. The asexual morph has very small, numerous, unilocular conidiomata, and fusiform conidia, usually straight and subhyaline, 6–9 ×2 μm (Nitschke 1870). There is no other record except the original description for this species in Nitschke (1870). Sequence data is not available for this species.

Diaporthe sorbicola (Nitschke) Bref. & Tavel, Unters. Gesammtgeb. Mykol. (Liepzig) 10: 236 (1891)

= *Chorostate sorbicola* (Nitschke) Sacc. & Trotter, Syll. fung. (Abellini) 22(1): 376 (1913)

= *Engizostoma sorbicola* (Nitschke) Kuntze, Revis. gen. pl. (Leipzig) 3: 475 (1898)

≡ *Valsa sorbicola* Nitschke, Jb. nassau. Ver. Naturk. 23–24: 198 (1870)

Typification details – N/A

Host – *Sorbus aucuparia* (Rosaceae)

Distribution – Europe (United Kingdom)

Notes – The species was found from branches and twigs of *Sorbus aucuparia* in the United Kingdom. *Diaporthe sorbicola* is characterized by oblong to elliptical, sessile asci, 24 ×4 μm and cylindrical, curved, hyaline ascospores, 8 ×2 μm (Fuckel 1870). There is no other record except the description of this species in Cannon et al. (1985) and Fuckel (1870). Sequence data is not available for this species.
Diaporthe sparsa Niessl, Inst. Coimbra 31: 17 (1883)
 Typification details – Holotype, NY (Peck s.n.)
 Hosts – *Glycine violacea* (Fabaceae), *Rhus toxicodendron* (Anacardiaceae)
 Distribution – Europe (Portugal), North America (USA: Michigan, New Jersey, New York)
 Notes – *Diaporthe sparsa* was found from dead branches of *Rhus toxicodendron* in the USA. This species is characterized by immersed stroma, limited by a black line, with minute, scattered, depressed globose perithecium, with a thick and short ostiole, 8-spored, lanceolate, sessile asci, 52–60 × 8–10 µm, distichous, oblong, obtuse, straight, 1-septate at the middle, constricted, hyaline ascospores, 10–12 × 3–4 µm. The species also has scattered spermogonia, papilliform ostiole, with oblong, usually straight, 2–4-guttules, hyaline spermata, 12–15 × 4–5 µm (Berlese & Voglino 1886). Sequence data is not available for this species.

 Typification details – Holotype, CBS H-22256; ex-type, CBS 140003
 Host – *Spartium junceum* (Leguminosae)
 Distribution – Europe (Spain)
 Notes – Crous et al. (2015b) introduced this species from the stem of *Spartium junceum* in Spain. *Diaporthe spartinicola* produces alpha and beta conidia in the same conidiomata. The alpha conidia of this species are ovoid to almost globose which is unusual for species in *Diaporthe* (Crous et al. 2015b). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe spartinicola* forms a basal clade to *D. toxica* species complex. Thus, we accept it as a singleton species in *Diaporthe*.

 Typification details – N/A
 Host – *Neoregelia spectabilis* (Syn. *Aregelia spectabilis*) (Stangeriaceae)
 Distribution – Asia (India)
 Notes – *Diaporthe spectabilis* was found on *Neoregelia spectabilis* in Maharashtra, India. There is no other record except the original description for this species. However, the authors were unable to find the original description of the species. Sequence data is not available for this species.

Diaporthe sphaeralceae Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 365 (1909)
 Typification details – Holotype, LPS, Spegazzini, Apr. 1904
 Host – *Sphaeralcea patagonica* (Malvaceae)
 Distribution – South America (Argentina: Buenos Aires)
 Notes – *Diaporthe sphaeralceae* was found from dead branches of *Sphaeralcea patagonica* in Buenos Aires, Argentina. This species is characterized by immersed, thin-membranaceous perithecia, carbonaceous ostiole, clavate to subsfusoid asci, 60 × 8–10 µm, and hyaline, ascospores, 16 × 5 µm. There is no other record except the original description for this species in Spegazzini (1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe sphingiophora (Oudem.) Sacc., Syll. fung. (Abellini) 1: 622 (1882)
 = *Sphaeria sphingiophora* Oudem., Ned. kruidk. Archif, 1 sér. 1: 29 (1872)
 Typification details – N/A
 Host – *Cornus alba* (Cornaceae)
 Distribution – Europe (Holland)
 Notes – *Diaporthe sphingiophora* was found from stems of *Cornus alba* in Holland and introduced by Saccardo (1882a). This species is characterized by scattered perithecia nesting under the epidermis, with oblong asci, 60 × 12 µm, and oblong, straight or slightly curved, 1-septate, hyaline ascospores, 17 × 5 µm. The asexual morph is undetermined. There is no other record except
the original description for this species in Saccardo (1882a). Sequence data is not available for this species.

Diaporthe spiculosa (Westend.) Nitschke, Pyrenomyc. Germ. 2: 256 (1870)
= *Phoma sambucella* Sacc., Syll. fung. (Abellini) 3: 71 (1884)
= *Phomopsis sambucella* (Sacc.) Traverso, Fl. Ital. crypt. (Florence) 2(1): 244 (1906)
= *Sphaeria spiculosa* Alb. & Schwein., Consp. fung. (Leipzig) 16 (1805)

Typification details – N/A
Host – *Sambucus racemosa* (Adoxaceae)
Distribution – Europe (Belgium, Germany, Italy, United Kingdom)
Notes – *Diaporthe spiculosa* was found on stems of *Sambucus racemosa*. The species is characterized by having immerse or semi-immersed perithecia, with long ostiole, gradually thickened towards the base, subcylindrical to narrowly clavate asci, 45–60 × 7–9 µm, narrowly fusiform, usually straight, 1-septate, constricted ascospores, 12–15 × 3 µm. Spermogonia were reported with ovate to oblong, 2-guttules spermatia, 8 × 3–4 µm (Saccardo 1882a). The detailed descriptions of its morphological characters were provided by Nitschke (1870) and Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe spinosa Y.S. Guo & G.P. Wang, Persoonia 45: 154 (2020)
Typification details – Holotype, HMAS 248151; ex-type, CGMCC 3.19602 = PCSG 383
Hosts – *Pyrus pyrifolia* cv. Cuiguan, *P. pyrifolia* cv. Yuanhuang (Rosaceae)
Distribution – Asia (China: Nanjing)
Notes – The sexual and asexual morphs of this species are described in Guo et al. (2020). Pathogenicity data are available for this species in Gao et al. (2020) on *Pyrus* sp.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe spinosa* clustered in the *D. arecae* species complex.

Typification details – N/A
Host – *Quercus dentata* (Fagaceae)
Distribution – Europe (Finland)
Notes – The species was introduced by Karsten (1873) from *Quercus dentata* on the island of Ruissalo, Finland. *Diaporthe spinosula* is characterized by slightly immersed in the wood or almost superficial stromata, with densely gregarious perithecia and slightly elongated ostiole. Spores of this species are oblong, 4-guttules, hyaline, 14–22 × 5–6 µm (Karsten 1873, Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe spiraeicola Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 147 (1903)
Typification details – N/A
Host – *Spiraea* sp. (Rosaceae)
Distribution – Europe (Luxembourg)
Notes – The sexual morph of this species is described in Feltgen (1903), from branches of *Spiraea* sp. in Luxembourg. It has cylindrical to spindle-shaped, rounded and truncated at the top, slightly tapered and narrowed at the base asci, 57–63 × 8.5 µm, oblong, rounded at both ends, straight or curved, 1-septate at the middle, slightly constricted, 2–3-guttules ascospores, 14–17 × 4.5 µm (Feltgen 1903). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe spissa Sacc. & Speg., Michelia 1(no. 4): 385 (1878)
Typification details – Holotype, PAD, Saccardo, 1877
Host – *Catalpa syringifolia* (Bignoniaceae)
Distribution – Europe (Italy)

Notes – The sexual morph of this species is described in Saccardo (1878) from branches of *Catalpa syringifolia* in Italy. This species is characterized by densely gregarious perithecia, with short ostiole, fusoid asci, 40–45 × 7–8 µm, aparaphysate, and fusoid, curved, constricted at the middle, obtuse on both sides, 4-guttules, hyaline ascospores, 10–11 × 3.5 µm (Saccardo 1878). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe sponheimeri Kirschst., Annls mycol. 34(3): 191 (1936)

Typification details – Holotype, Sponheimer, 27 Mar. 1936
Host – Unidentified host
Distribution – Europe (Germany)

Notes – *Diaporthe sponheimeri* was found from the wood of an unidentified host. The sexual morph characters were described in Kirschstein (1936), with 5–10 perithecia grouped and deeply immersed in the inner bark, narrowly oblong, apex rounded, with shortly stipitate asci, 60–70 × 8–10 µm, aparaphysate, fusiform, rounded on both sides, constricted at the middle, 4-guttules, hyaline ascospores, 12–14 × 3–4 µm (Kirschstein 1936). The asexual morph is undetermined. There is no other record except the original description for this species. Sequence data is not available for this species.

Diaporthe staphylina Ellis & Everh., N. Amer. Pyren. (Newfield): 737 (1892)

Typification details – Holotype, NY, Dearness 93
Host – *Staphylea trifolia* (Staphyleaceae)
Distribution – North America (Canada)

Notes – The sexual morph of *Diaporthe staphylina* was reported in Ellis & Everhart (1892) from dead branches of *Staphylea trifolia* in Ontario, Canada. It comprises globose, 3–10 perithecia in a stroma which are irregularly shaped, umbilicate erumpent ostiole, mostly joined in a small, black, irregular-shaped disk which barely pierces the epidermis without rising above it, clavate asci, 50–55 × 7–8 µm, paraphysate, and oblong to elliptical, slightly curved, 1-septate, scarcely constricted, 3–4-guttules, hyaline ascospores, 12–15 × 4–5 µm (Ellis & Everhart 1892). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, NY, Bartholomew 1482
Host – *Symphoricarpos occidentalis* (Caprifoliaceae)
Distribution – North America (USA)

Notes – The sexual morph of *Diaporthe stereostoma* was reported in Ellis & Everhart (1894) from dead branches of *Symphoricarpos occidentalis* in Kansas, USA. It comprises subglobose 3–12 perithecia in a stroma, slightly sunk in the surface of wood, clavate to cylindrical asci, 45–50 × 7–8 µm, paraphysate, and oblong to elliptical, slightly constricted in the middle, with 3–4-guttules, hyaline ascospores, 10–12 × 3.5–4 µm (Ellis & Everhart 1894). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe stewartii A.L. Harrison, Mycologia 27(5): 525 (1935)

Typification details – Holotype, CUP 21993
Host – *Cosmos bipinnatus* (Asteraceae)
Distribution – North America (USA)

Notes – The sexual morph of *Diaporthe stewartii* was reported in Harrison (1935). It was found on *Cosmos bipinnatus* in New York, USA. It comprises embedded globose perithecia, elongate clavate asci, 25–43 × 3.9–7.3 µm, biseriate, slightly curved, hyaline ascospores, 9.2–17.2 × 1.3–3.3 µm.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe stewartii* clustered in the *D. sojae* species complex.
= Phoma stictica var. buxicarpa Sacc., Malpighia 11(6–8): 306 (1897)
Typification details – Holotype, CBS 370.54
Host – Buxus sempervirens (Buxaceae)
Distribution – Europe (Italy)
Notes – Diaporthe stictica was found on Buxus sempervirens in Italy. The species was first introduced as Phoma stictica. Gomes et al. (2013) synonymized it under Diaporthe stictica. It is characterized by scattered, very minute perithecia, covered by the cuticle, which at length splits lengthwise, oblong to elliptical spores, with a sporidiolum at either extremity (Berkeley & Broome 1850).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe stictica clustered in the D. oncostoma species complex.

Diaporthe striformis (Fr.) Nitschke, Jb. nassau. Ver. Naturk. 23–24: 206 (1870)
= Dothidea striformis (Fr.) Fr. [as ‘striaeforme’], Summa veg. Scand., Sectio Post. (Stockholm): 386 (1849)
≡ Sphaeria striformis Fr., Syst. mycol. (Lundae) 2(2): 428 (1823)
Typification details – N/A
Host – Epilobium angustifolium (Onagraceae)
Distribution – Europe (Germany)
Notes – The species was first reported as Sphaeria striformis. Later, Nitschke (1870) synonymized it under Diaporthe striformis. It is characterized by oblong asci, 50 × 6 µm, oblong, 1-septate, 4-guttules, hyaline ascospores, 12 × 3 µm. A detailed description of its sexual morph is not available. Sequence data is not available for this species.

Diaporthe strumella (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870)
= Chorostate strumella (Fr.) Traverso, Fl. Ital. crypt., Pars 1: Fungi. Pyrenomycetae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 199 (1906)
= Diaporthe pteleae Rehm, in Sydow, Mycotheca Marchica, cent. 16: no. 1568 (1887)
= Diatrype strumella (Fr.) Fr., Summa veg. Scand., Sectio Post. (Stockholm): 385 (1849)
= Phoma lirelliformis f. ribicola Sacc., Syll. fung. (Abellini) 3: 87 (1884)
= Valsa strumella (Fr.) Auersw., Fungi rhenani exsic., fasc. 6: no. 598 (1863)
≡ Sphaeria strumella Fr., Syst. mycol. (Lundae) 2(2): 365 (1823)
Typification details – N/A
Host – Ribes alpinum (Grossulariaceae)
Distribution – Europe (Germany)
Notes – Diaporthe strumella was first reported as Sphaeria strumella, found from Ribes alpinum in Germany. The sexual morph of D. strumella was reported in Fuckel (1870), with 1–6 perithecia aggregated in a stroma, oblong asci, 44 × 9 µm, and ovate to oblong, 1-septate, 3-guttules ascospores, 12 × 3–4 µm (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe strumelliformis (De Not.) Sacc., Syll. fung. (Abellini) 1: 614 (1882)
Typification details – N/A
Host – *Dendrobium* sp. (Orchidaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe strumelliformis* was first reported as *Sphaeria strumelliformis*, found from dead stems *Dendrobium* sp. in Italy. The sexual morph of *D. strumelliformis* was reported in Saccardo (1882a). This species is characterized by globose, black perithecia, with cylindrical ostiole, fusoid to clavate asci, 40–50 × 7 µm, a paraphysate, and cylindrical to fusoid, 3-septate, hyaline ascospores, 15 × 4–5 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe subaquila (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 611 (1882)
≡ *Melogramma subaquilum* Berk. & M.A. Curtis, Grevillea 4(no. 31): 98 (1876)
Typification details – Holotype, Ravenel 3405
Host – *Acer* spicatum (Sapindaceae)
Distribution – North America (USA)
Notes – The species was first reported as *Melogramma subaquilum*. Saccardo (1882a) synonymized it under *Diaporthe subaquilum*. The species was found on stems of *Acer spicatum* in Massachusetts, USA. It is characterized by few perithecia, bursting through the bark longitudinally, with clavate asci, and 1-septate, constricted at the septum, sometimes almost biconical ascospores, 20–22 long µm (Berkele 1876, Saccardo 1882a). Sequence data is not available for this species.

Typification details – Holotype, ZJUD 95H; ex-type, ZJUD95 = CGMCC 3.17257 = ICMP 20663
Hosts – *Citrus maxima*, *C. unshiu* (Rutaceae), *Pometia pinnata* (Sapindaceae)
Distribution – Asia (China, Thailand)
Notes – This species was introduced from citrus leaf scab and fruit melanose in Fujian, China by Huang et al. (2015). Hyde et al. (2017) reported this species as a pathogen on an unidentified diseased leaf in Thailand. Sun et al. (2021) reported *Diaporthe subclavata* from symptomatic leaves of *Pometia pinnata* in China. Only the asexual morph is available for this species. The morphological description and illustration of the asexual morph were provided by Huang et al. (2015).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe subclavata* clustered in the *D. eres* species complex (= *D. alnea* species complex), the type strain is sister to *D. heliconiae*.

Diaporthe subcongrua Ellis & Everh., N. Amer. Pyren. (Newfield): 425 (1892)
Typification details – Holotype, NY, Dearness s.n.
Host – *Acer* sp. (Sapindaceae)
Distribution – North America (Canada)
Notes – This species is described from dead branches of *Acer* sp. in Ontario, Canada. The species is characterized by having 6–12 perithecia in a stroma, penetrating to the wood, oblong to fusoid, subsessile asci, 50 × 8–10 µm, oblong to elliptical, obtuse at both ends, with 1-septate and slightly constricted ascospores, 12–14 × 3.5–4.5 µm. A detailed description of *D. subcongrua* is available in Ellis & Everhart (1892). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe subcorticalis Hazsl., Mathem. Természettud. Közlem. Magy. Tudom. Akad. 25(2): tab. 13, Fig. 21 (1893)
Typification details – N/A
Host – N/A
Distribution – N/A
Notes – Other than the type specimen there are no records available for this species. The authors were unable to find the original description of this species. Sequence data is not available for this species.

Typification details – Holotype, MFLU 17-1195; ex-type, KUMCC 17-0151
Host – *Salix* sp. (Salicaceae)
Distribution – Aisa (China)
Notes – Hyde et al. (2018) introduced *Diaporthe subcylindricola*, a fungus from a dead branch of *Salix* sp. in Yunnan, China, with its sexual morph. The species has scattered to gregarious, immersed ascomata, eventually the neck erumpent, unitunicate, cylindrical, without pedicellate asci, with a conspicuous refractive apical ring, and fusiform, 0–1-septate, slightly constricted at the septum, hyaline ascospores (Hyde et al. 2018). The asexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe subcylindrospora* clustered in the *D. rudis* species complex.

Typification details – Holotype, MFLU 17-1197; isotype, HKAS99560; ex-type, KUMCC 17-0153
Host – Unidentified
Distribution – Asia (China)
Notes – *Diaporthe subellipicola* was reported by Hyde et al. (2018), as a fungus on the dead wood of an unidentified host in Songming, China. The sexual morph description for this species was given by Hyde et al. (2018), with scattered, immersed ascomata, eventually the neck erumpent unitunicate, clavate, without pedicel asci, a conspicuous refractive apical ring, and ellipsoid, 0–1-septate, swollen apical cell, slightly constricted at the septum, hyaline ascospores. The asexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe subellipicola* clustered in the *D. sojae* species complex.

Diaporthe subordinaria (Desm.) R.R. Gomes, Glienke & Crous, Persoonia 31: 34 (2013)
≡ *Phomopsis subordinaria* (Desm.) Traverso, Fl. italic. crypt. (Florence) 2(1): 232 (1906)
Typification details – N/A
Host – *Plantago* sp. (Plantaginaceae)
Distribution – Europe (Ukraine), North America (USA), Russia, South America (Chile)
Notes – *Diaporthe subordinaria* is a pathogenic fungus and the causative agent of stem disease in *Plantago* sp. This species can also be found on the leaves and seeds of *Plantago* sp. This is likely to be a host-restricted species. It was described by Roberge in 1851 (De Nooij & Van der Aa 1987) with sexual morph illustrations. The asexual morph comprises both alpha, beta conidia and spermatia (De Nooij & Van der Aa 1987). The pathogenicity test was conducted by De Nooij & Van Damme (1988).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe subordinaria* clustered in the *D. sojae* species complex.

Diaporthe subpyramidata (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 636 (1882)
≡ *Eutypa subpyramidata* Berk. & M.A. Curtis, Grevillea 4(no. 31): 97 (1876)
Typification details – Holotype, Ravenel 741
Host – *Quercus* sp. (Fagaceae)
Distribution – North America (USA)
Notes – Saccardo (1882a) synonymized Eutypa subpyramidata under Diaporthe subpyramidata. This species is characterized by perithecia with a somewhat pyramidal shape, forming a rasp-like stratum, with lanceolate asci, and biconical conidia (Berkeley 1876, Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe syngenesia (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

≡ *Chorostate syngenesia* (Fr.) Traverso, Fl. ital. crypt., Pars I: Fungi. Pyrenomycetae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 206 (1906)

≡ *Diaporthe nigrigcolor* f. *pseudonigrigcolor* Rehm, Hedwigia 43(Beibl.): (32) (1904)

≡ *Diaporthe nigrigcolor* Nitschke, Pyrenomyc. Germ. 2: 260 (1870)

≡ *Diaporthe syngenesia* f. *nigrigcolor* (Nitschke) Petr., Hedwigia 65: 207 (1925)

≡ *Diaporthe syngenesia* f. *syngenesia* (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

≡ *Diatrype syngenesia* (Fr.) Cooke, J. Bot., Lond. 4: 99 (1866)

≡ *Engizostoma berchemiae* (Cooke) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 473 (1898)

≡ *Engizostoma syngenesium* (Fr.) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 475 (1898)

≡ *Eutypella berchemiae* (Cooke) Sacc., Syll. fung. (Abellini) 1: 154 (1882)

≡ *Sphaeria frangulae* (Cooke) Sacc., Syll. fung. (Abellini) 1: 626 (1882)

≡ *Valsa syngenesia* (Fr.) Fr., Summa veg. Scand., Sectio Post. (Stockholm): 411 (1849)

≡ *Valsa syngenesia* var. *berchemiae* (Cooke) M.A. Curtis ex Sacc., Syll. fung. (Abellini) 1: 154 (1882)

≡ *Sphaeria syngenesia* Fr., Syst. mycol. (Lundae) 2(2): 382 (1823)

Typification details – N/A

Host – *Frangula alnus* (Syn. *Rhamnus frangula*) (Rhamnaceae)

Distribution – Europe (Belgium, Finland, Germany, Italy, United Kingdom)

Notes – *Sphaeria syngenesia* is the basionym for this species. Saccardo (1882a) synonymized it under *Diaporthe syngenesia* and provided the sexual morph description. This species is recorded from stems of *Frangula alnus*. This species appears to be host-specific. *Diaporthe syngenesia* is characterized by oblong asci, 48 x 8 μm, oblong to lanceolate ascospores, 4-guttules, with a short setiform appendage on both sides, 12 x 4 μm (Fuckel 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tageteos Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 365 (1909)

Typification details – Holotype, LPS, Spegazzini, Mar. 1905

Host – *Tagetes minuta* (Asteraceae)

Distribution – North America (USA), Oceania (Australia), South America (Argentina, Brazil)

Notes – *Diaporthe tageteos* was found on rotten stems of *Tagetes minuta* in Mexico, USA. This species has immersed, membranaceous perithecia, very short carbonaceous ostiole, with clavate to fusoid, short pedicellate asci, 50–55 x 7–9 μm, subcylindrical to fusoid, 1-septate, gently constricted at the septum, obtuse on both ends ascospores, 14–16 x 4 μm (Spegazzini 1909). The detailed sexual morph description for *D. tageteos* is available in Spegazzini (1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe taiwanensis H.A. Ariyawansa & I. Tsai, Phytotaxa 461(3): 161 (2020)

Typification details – Holotype, NTUH 18-105-1

Host – *Ixora chinensis* (Rubiaceae)

Distribution – Asia (China, Taiwan)

Notes – This species was isolated and introduced as a pathogen causing leaf spots and necrosis on *Ixora chinensis* in Taiwan. The descriptions, illustrations of asexual morph and pathogenicity data were provided by Ariyawansa et al. (2020). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe taiwanensis* clustered in the *D. arecae* species complex.

Diaporthe take Hara, Bot. Mag., Tokyo 27(no. 317): 251 (1913)
Typification details – N/A
Host – *Phyllostachys bambusoides* (Syn. *Phyllostachys reticulata*) (Poaceae)
Distribution – Asia (Japan)
Notes – Other than the type specimen there are no records available for this species. However, the authors were unable to find the original description of this species. Sequence data is not available for this species.

= *Melanoporthae talae* (Speg.) Wehm., Revta Mus. La Plata, Secc. Bot. 2: 85 (1938)
Typification details – Holotype, LPS, Spegazzini, Feb. 1889
Host – *Celtis talae* (Cannabaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe talae* was reported from dead stems of *Celtis talae* in Buenos Aires, Argentina. Morphological description of sexual morph is available in Spegazzini (1898), with aparaphysate, fusoid to clavate asci, 100–120 × 16–20 µm, 1-septate, hyaline, 1-guttules ascospores, 20–22 × 10–12 µm (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tamaricina Sacc. & Flageolet, Atti del Congr. bot. di Palermo: 52 (1902)
Typification details – N/A
Host – *Tamarix africana* (Tamaricaceae)
Distribution – Europe (British Isles, United Kingdom)
Notes – *Diaporthe tamaricina* was reported from dead stems of *Tamarix africana*. Morphological description of the sexual morph of *D. tamarina* is available in Saccardo & Saccardo (1905), with gregarious, immersed, very small perithecia, ostiolate, fusoid asci, aparaphysate, fusoid, curved, obsolete, guttules, hyaline ascospores, 10 × 2.5 µm (Saccardo & Saccardo 1905). This species is characterized by the absence of a distinct line separating the fruiting bodies. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A
Host – *Pyrus communis* (Rosaceae)
Distribution – Asia (Japan)
Notes – *Diaporthe tanakae* was reported from cankered bark and dead twigs of *Pyrus communis* in Honshu, Japan. This species was illustrated and described based on both sexual morph (*D. tanakae*) and asexual morph (*Phomopsis tanakae*).
In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), this species grouped in the *D. eres* species complex. Multi-loci phylogeny is needed to confirm the status of this species.

Typification details – Holotype, MFLU 16-0907; ex-type, MFLUCC 16-0117 = CGMCC3.17464
Hosts – *Prunus persica* (Rosaceae), *Citrus sinensis* (Rutaceae)
Distribution – Asia (China)
Notes – *Diaporthe taoicola* is described with its asexual morph in Dissanayake et al. (2017c). It is characterized by producing alpha conidia with tapering toward both ends. Gamma conidia for this species were not observed. Pathogenicity tests confirmed the species as a pathogen causing
necrotic lesions on detached *Prunus persica* (Dissanayake et al. 2017c). Guo et al. (2020) reported *D. taoicola* as responsible for pear shoot canker in China and inoculated it on wounded twigs of different fruit crops to evaluate its host range which could induce symptoms in citrus, apple, peach, and kiwifruit (Guo et al. 2020, Cui et al. 2021). Cui et al. (2021) provided the first record of this species on *Citrus sinensis* and the pathogenicity test revealed that it induces fruit rot of *C. sinensis*.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. arecae* species complex.

Diaporthe tarchonanthi Crous, Fungal Systematics and Evolution 6: 185 (2020)

Typification details – Holotype, CBS H-24196; ex-type, CBS 146073

Host – *Tarchonanthus littoralis* (Asteraceae)

Distribution – Africa (South Africa)

Notes – *Diaporthe tarchonanthi* was described from the leaves of *Tarchonanthus littoralis* with description and illustration of the asexual morph in Crous et al. (2020b). The species is closely related to *D. oxe* (Crous et al. 2020b) but can be distinguished based on its larger conidia (Gomes et al. 2013). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe tarchonanthi* clustered in the *D. sojae* species complex.

Diaporthe taxi Oudem. & Destrée, Rév. Champ. Pays-Bas (Amsterdam) 2: 251 (1897)

Typification details – N/A

Host – *Taxus baccata* (Taxaceae)

Distribution – Europe (The Netherlands)

Notes – *Diaporthe taxi* was identified and described from twigs of *Taxus baccata* based on the sexual morph description of the species (Oudemans 1897). This species is characterized by 3–5 perithecia in a stroma, cylindrical asci, with rounded at the top and tapered towards the base, 116 long µm, elliptical, 1-septate, guttules ascospores, 18–21 × 9 µm (Oudemans 1897). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe taxicola Sacc. & P. Syd., Syll. fung. (Abellini) 16: 493 (1902)

Typification details – Holotype, Feltgen, May 1899

Host – *Taxus baccata* (Taxaceae)

Distribution – Europe (Luxembourg)

Notes – The species was found on dead branches of *Taxus baccata* and was introduced based on the sexual morph (Saccardo & Sydow 1902). *Diaporthe taxicola* is characterized by scarcely developed stromata, with 3–5 perithecia in a stroma, with short protruding ostiole, cylindrical asci, a paraphysate, 52–62 × 8–10 µm, 1-septate ascospores, with 2-guttules in each cell, 13–15 × 4–4.5 µm (Saccardo & Sydow 1902). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tecomae Sacc. & P. Syd., Syll. fung. (Abellini) 14(1): 550 (1899)

Typification details – Specimen CBSH-16834, culture collection CBS 100547 is used as the reference species in Gomes et al. (2013)

Hosts – *Tabebuia* sp. (Bignoniaceae), associated with galls of *Prospodium tecomicola* in *Tabebuia* sp.

Distribution – South America (Brazil)

Notes – In Saccardo & Sydow (1899b), *Diaporthe tecomae* was considered a synonym for *D. interrupta*. Gomes et al. (2013) based on new collections and DNA sequence data proposed the use of *D. tecomae* instead of *D. interrupta*. The asexual morph was originally described as *Phoma tecomae*, from Italy on *Tecoma radicans* (Saccardo 1878), and is probably distinct from the fungus represented by CBS 100547, which occurs on *Tabebuia* sp. in Brazil. However, as no ex-type...
strains are available for *D. tecomae*, Gomes et al. (2013) were unable to confirm this. This species was found to be fungicolous on the rust fungus *Prospodium tecomicola*.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.

Diaporthe tecta (Cooke) Sacc., Syll. fung. (Abellini) 2: XLVIII (1883)

= *Valsa tecta* Cooke, Grevillea 11(no. 59): 109 (1883)

Typification details – Holotype, Ravenel 747

Host – On bark of *Myrica* sp. (Myricaceae)

Distribution – North America (USA)

Notes – Saccardo (1891) synonymized *Valsa tecta* to *Diaporthe tecta* and provided the sexual morph description for the species. *Diaporthe tecta* was reported from *Myrica* sp., with 1-septate, 4-guttules, hyaline ascospores, 18 × 5 µm, (Saccardo 1883). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tectonae Doilom, Dissan. & K.D. Hyde, Fungal Divers. 82: 164 (2016)

Typification details – Holotype, MFLU 15-3555; ex-type, MFLUCC 12-0777; paratype, MFLU 15–3536; ex-paratype, MFLUCC 12–0782 = MKT 091/3 = ICMP 21171

Hosts – *Tectona grandis* (Lamiaceae), Soil

Distribution – Asia (Korea, Thailand)

Notes – *Diaporthe tectonae* was introduced from branches and twigs showing dieback symptoms in Thailand (Doilom et al. 2017). It was also reported from the soil in Korea (Park et al. 2017). The descriptions and illustrations of asexual morph were provided by Doilom et al. (2017). The sexual morph is undetermined. *Diaporthe tectonae* has black to brown textura angularis cells at the outer layer of conidioma walls which is different from its sister taxa *D. tulliensis*. Beta conidia of *D. tectonae* are shorter and slightly wider than *D. tulliensis* (Doilom et al. 2017). Pathogenicity data was performed by Du et al. (2021), which confirmed *D. tectonae* as the cause of the leaf spot and shoot blight of kiwifruit in China.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.

Diaporthe tectonendophytica Doilom, Dissan. & K.D. Hyde, Fungal Divers. 82: 163 (2016)

Typification details – Holotype, MFLU 15-3537; ex-type, MFLUCC 13-0471

Hosts – *Hylocereus polyrhizus* (Cactaceae), *Tectona grandis* (Lamiaceae)

Distribution – Asia (Thailand)

Notes – *Diaporthe tectonendophytica* was isolated as an endophyte from teak in Thailand (Doilom et al. 2017). The species was also found as a pathogen causing stem gray blight of *Hylocereus polyrhizus*, its pathogenicity was confirmed by Huda-Shakirah et al. (2021). Alpha conidia of *D. tectonendophytica* are ellipsoid, shorter, and wider than its sister taxa. A detailed description of the asexual morph is available in Doilom et al. (2017). The sexual morph is undetermined.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), *D. tectonendophytica* clustered in the *D. sojae* species complex.

Diaporthe tectonigena Doilom, Dissan. & K.D. Hyde, Fungal Divers. 82: 165 (2016)

Typification details – Holotype, MFLU 15-3534; ex-type, MFLUCC 12-0767

Host – *Tectona grandis* (Lamiaceae)

Distribution – Asia (Thailand)

Notes – Doilom et al. (2017) introduced this species to accommodate a *Diaporthe* species associated with the twig dieback of Teak in Thailand. The sexual morph for this species is not reported. Alpha, beta and gamma conidia were observed in the asexual morph of this species (Doilom et al. 2017).
In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), *D. tectonigena* clustered in the *D. arecae* species complex.

Diaporthe tenella (Schwein.) Starbäck, Bih. K. svenska VetenskAkad. Handl., Afd. 3 19(no. 2): 28 (1894)

Typification details – Holotype, Schweinitz 1658; lectotype BPI 801136

Host – *Hibiscus rosa-sinensis* (Malvaceae)

Distribution – Asia (Palestine: Bethlehem), North America (USA: Pennsylvania)

Notes – *Spharia tenella* is a synonym for this species. *Diaporthe tenella* was reported from stems of *Hibiscus rosa-sinensis*. The species has clavate to cylindrical asci, with a short pedicel, 40–50 × 7–9 µm, and elongate, obtuse on both sides, 1-septate, not constricted, with small droplets in one or both cells, 7–10 × 2.5–3.5 µm ascospores. The detailed sexual morph description of this species is available in Starbäck (1894). The asexual morph is undetermined. Sequence data are unavailable for this species.

Diaporthe tenuirostris Nitschke, Pyrenomyc. Germ. 2: 293 (1870)

Typification details – N/A

Host – *Corylus avellana* (Betulaceae)

Distribution – Europe (Germany, Italy)

Notes – *Diaporthe tenuirostris* was introduced by Nitschke (1870), from *Corylus avellana*. This species is characterized by having immersed stromata, perithecia with a very thin neck, and erumpent, elongate, thin ostiole, oblong, clavate, sessile asci, 60 × 7–8 µm, fusiform, obtuse on both ends, 1-septate, hyaline ascospores 13–14 × 3 µm (Saccardo 1882a). The detailed sexual morph description of this species was provided by Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available.

Diaporthe terebinthi Fabre, Annls Sci. Nat., Bot., sér. 6 9: 46 (1879)

Typification details – N/A

Host – *Pistacia terebinthus* (Anacardiaceae)

Distribution – Europe (France)

Notes – *Diaporthe terebinthi* was identified and described from the base of a dead stem of *Pistacia terebinthus* in Gaul, France. The detailed sexual morph description for the species is available in Saccardo (1891). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe terebinthifolii R.R. Gomes, Glienke & Crous, Persoonia 31: 35 (2013)

Typification details – Holotype, CBS H-21097; ex-type, CBS 133180

Host – *Schinus terebinthifolia* (Anacardiaceae)

Distribution – South America (Brazil, Uruguay)

Notes – *Diaporthe terebinthifolii* was isolated as an endophyte of *Schinus terebinthifolia* in Paraná, Brazil (Gomes et al. 2013). It is characterized by conical conidiomata pycnidial, immersed, with brown to black ostiole, rarely forms necks, short and covered with hyphae, curved or hamate beta conidia, while alpha and gamma conidia are not observed (Gomes et al. 2013). A detailed asexual morph description of this species was provided by Gomes et al. (2013). The sexual morph is undetermined. Yedukondalu et al. (2016) identified the production of Diapolic acid A-B from this species. Tonial et al. (2017) used the extracts of *D. terebinthifolii* against *Phyllosticta citricarpa*, which inhibited spore germination.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), *D. terebinthifolii* clustered in the *D. sojae* species complex.
Diaporthe tersa (Sacc.) Udayanga & Castl., IMA Fungus 7(2): 291 (2016)

≡ *Phoma tersa* Sacc., Bolm Soc. broteriana, Coimbra, sér. 1 11: 16 (1893)

Typification details – N/A

Hosts – *Passiflora* sp. (Passifloraceae), Deep-Sea Sediments of the Indian Ocean

Distribution – Asia (Indian Ocean), Europe (Portugal)

Notes – The asexual morph was originally described as *Phoma tersa* which was found from dried fruits of *Passiflora* sp. in Portugal (Saccardo 1893). This species has densely gregarious perithecia, with ostiole, ellipsoid, obtuse at both sides, constricted at the middle, 2-guttule, hyaline spores, 6 × 2.5 µm, basidia was reported (Saccardo 1895). Rossman et al. (2016) introduced a new combination for this species as *D. tersa*. There are 14 ITS sequences available for this species in GenBank (2023). However, no ex-type strains are available to confirm the identity of these data. Therefore, epitypification is recommended for this species. This species has anti-bacterial and cytotoxic properties (Chen et al. 2019, Xu et al. 2021).

The phylogenetic analyses of ITS sequence data alone showed that both strains of *D. tersa* grouped as singleton species (Norphanphoun et al. 2022, Fig. 3).

Diaporthe tessera (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 25–26: 318 (1871)

≡ *Chorostate tessera* (Fr.) Traverso, Fl. ital. crypt., Pars 1: Fungi. Pyrenomycetaceae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 209 (1906)

≡ *Wuestneia tessera* (Fr.) Auersw., in Rabenhorst, Fungi rhenani exsic., pars 6: no. 592 (1863)

≡ *Sphaeria tessera* Fr., Syst. mycol. (Lundae) 2(2): 405 (1823)

Typification details – N/A

Host – *Corylus avellana* (Betulaceae)

Distribution – Europe (Belgium, Germany, Italy)

Notes – *Diaporthe tessera* was recorded from dead branches of *Corylus avellana*. *Diaporthe tessera* is characterized by having oblong asci, 72 × 10 µm, oblong to lanceolate, 1 septate, constricted at the middle, 4-guttule, hyaline ascospores, 14 × 6 µm (Fuckel 1871). A detailed morphological description of the species is available in Funckel (1871) and Saccardo (1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, NY, Nuttall, May 1894

Host – *Halesia tetraptera* (Styracaceae)

Distribution – North America (USA)

Notes – Recorded from dead branches of *Halesia tetraptera*. *Diaporthe tetraptera* has smaller superficial perithecia and larger spores compared with *D. halisiae* (a species occurring on the same host). Detailed descriptions of sexual morph are available in Ellis & Everhart (1894) and Saccardo (1895). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tetraspora Sacc., Michelia 1(no. 2): 250 (1878)

Typification details – N/A

Host – *Angelica* sp. (Apiaceae)

Distribution – Europe (Switzerland)

Notes – *Diaporthe tetraspora* is recorded from dry stems of *Angelica* sp. in Switzerland. It is characterized by having 4-spored, terete to clavate, apex rounded asci, 2-foveolate, aparaphysate, 50–55 × 7.5–8.5 µm, ovate to oblong, 3-guttule, hyaline ascospores, 14–16 × 5–5.5 µm. A detailed description of this species is available in Saccardo (1882b). Sequence data is not available for this species.
Diaporthe teucrii Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 134 (1903)
Typification details – N/A
Host – *Teucrium scorodonia* (Lamiaceae)
Distribution – Europe (Luxembourg)
Notes – Feltgen (1903) and Saccardo (1905) provided the detailed sexual morph description of *Diaporthe teucrii*, which was recorded on dead stems of *Teucrium scorodonia* in Luxembourg. This species is characterized by solitary or gregarious perithecia, cylindrical, straight or curved, prominent ostiole, elliptic to fusiform asci, 50–55 × 7–8 µm, truncated, straight or curved, 1-septate, somewhat constricted, 2-guttules in each cell, hyaline ascospores, 14–16 × 4–4.5 µm (Feltgen 1903). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, K(M)187005
Hosts – *Camellia theifera* (Theaceae), *Diospyros kaki* (Ebenaceae)
Distribution – Africa (Tanzania), Asia (Japan, Korea, Sri Lanka), Europe (United Kingdom), Oceania (Papua New Guinea)
Notes – This species was first introduced as *Phomopsis theae* by Petch (1925), from twigs of *Camellia theifera* in Sri Lanka. Rossman et al. (2015) introduced *Diaporthe theae* as a novel combination to accommodate this species. Unpublished sequences are available in NCBI as *Phomopsis theae*.

Typification details – Holotype, HSAUP 1022221; ex-type, SAUCC102221
Host – *Theobroma cacao* (Malvaceae)
Distribution – Asia (China)
Notes – *Diaporthe theobromatis* was isolated from the leaf spot of *Theobroma cacao* in Yunnan, China (Dong et al. 2020). The species produced pycnidial conidiomata on PDA, coated with short hyphae, whitish translucent to yellowish conidial drops exuded from the ostioles, cylindrical, branched, septate, hyaline conidiophores, phialidic, cylindrical, straight, terminal, hyaline conidiogenous cells, with ellipsoid or falcate, acute at both ends, 1- to 2-guttules, hyaline alpha conidia, and filiform, hamate or curved, hyaline beta conidia. A detailed asexual morph description is available in Dong et al. (2020). The sexual morph is undetermined.

In the phylogenetic tree, *D. theobromatis* is closely related to *D. hongkongensis* and *D. salinicola*. However, the species differs from *D. hongkongensis* in having longer alpha conidia (5–12 µm vs. 6–7 µm), while the asexual morph of *D. salinicola* is undetermined (Gomes et al. 2013, Dayarathne et al. 2020, Dong et al. 2020)

Diaporthe therryana Sacc. & Penz., Michelia 2(no. 8): 593 (1882)
Typification details – N/A
Host – *Helleborus foetidus* (Ranunculaceae)
Distribution – Europe (France)
Notes – The species was found on stems of *Helleborus foetidus* in Gaul, France. The sexual morph description for this species is available in Saccardo (1882b, 1883). *Diaporthe therryana* is characterized by havingstromata, with gregarious, immersed perithecia, erumpent and filiform ostiole, fusoid asci, 36–46 × 6–7 µm, apaparyphysate, and fusoid, 1-septate, obsolete, 4-guttules, hyaline ascospores, 10–11 × 2.5–3 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe thuiana Petr., Anns mycol. 19(1/2): 50 (1921)
Typification details – Holotype, Petrak, 16 Jan. 1919
Host – *Thuja* sp. (Cupressaceae)
Distribution – Europe (Austria, Czech Republic)
Notes – The species was introduced by Petrak (1921b). The sexual morph description on a dead branch of *Thuja* sp. for this species is available in Petrak (1921b) and Trotter & Cash (1972). It is characterized by loosely scattered stromata, with 3–8 perithecia, cylindrical ostiole cylindrical to spindle-shaped, tapered at both ends asci, 50–75 × 6–8 μm, a paraphysate, with oblong or almost spindle-shaped, slightly tapered at both ends, 1-septate, constricted, straight or slightly curved, hyaline ascospores, with guttules, 12–16 × 4–5 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, MFLU 12-0117; ex-type, MFLUCC 10-0576a
Host – *Thunbergia laurifolia* (Acanthaceae)
Distribution – Asia (Thailand)
Notes – Udayanga et al. (2012a) introduced this species from leaves of *Thunbergia laurifolia* in Thailand, which had distinct morphological characters including multi-guttules, small, bacillus-like alpha conidia on the host and forming of gamma conidia. The detailed asexual morph characters were described and illustrated by Udayanga et al. (2012a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe thunbergiae* clustered in the *D. scorbina* species complex.

Typification details – Holotype, MFLU 14-0816; ex-type, MFLUCC 12-0033
Host – *Thunbergia laurifolia* (Acanthaceae)
Distribution – Asia (Thailand)
Notes – This species was isolated as a pathogen of leaves of *Thunbergia laurifolia* in Chiang Mai, Thailand, which was associated with typical leaf spots and in the latent phase of yellowing and leaf necrosis. Even though this species was identified as associated with a leaf disease, pathogenicity data are unavailable. Liu et al. (2015) noted that *D. thunbergiicola* has abundant and distinct alpha and beta conidia. The alpha conidial dimensions overlap with other taxa in *Diapothoe*. Therefore, it is impossible to recognize this species using only morphology. The detailed asexual morph descriptions were described and illustrated by Liu et al. (2015). The sexual morph is undetermined.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.

Typification details – Holotype, BJFC-CF 2017601; ex-type, CFCC 51999
Host – *Juglans regia* (Juglandaceae)
Distribution – Asia (China)
Notes – This species was isolated from twigs and branches of *Juglans regia* in Tibet Autonomous Region, China. The asexual morph description for *Diaporthe tibetensis* was given by Fan et al. (2018) with conidiomata, pycnidial, embedded in the bark, abundant in twigs, slightly erumpent, with a single locule, ellipsoidal or oval, occasionally with one end cuspidal, aseptate, hyaline alpha conidia, while beta conidia not observed. The sexual morph is not reported for this species.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe tibetensis* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Diaporthe torilicola Dissan., Camporesi & K.D. Hyde, Mycosphere 8(5): 870 (2017)
Typification details – Holotype, MFLU 16-1166; ex-type, MFLUCC 17-1051
Host – *Torilis arvensis* (Apiaceae)
Diaporthe transiens Sacc., Annls mycol. 11(6): 558 (1913)
Typification details – Holotype, Petrak 7
Host – Aesculus hippocastanum (Sapindaceae)
Distribution – Europe (Germany)

Diaporthe toxicodendri Y. Ando, Masuya & Tabata, Mycosphere 8(5): 1161 (2017)
Typification details – Holotype, TFM FP-10740; ex-type, FFPRI420987
Host – Toxicodendron vernicifluum (Anacardiaceae)
Distribution – Asia (Japan: Honshu, Aomori, and Iwate Prefectures)
Notes – Ando et al. (2017) introduced Diaporthe toxicodendri to accommodate a canker causing taxon on Toxicodendron vernicifluum in Honshu, Japan. This species did not produce beta and gamma conidia. Alpha conidia are aseptate, smooth, ellipsoid to oblong, straight to variously curved, tapering towards both ends (Ando et al. 2017). The sexual morph is undetermined. A pathogenicity study for this species is available in Ando et al. (2017).
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe toxicodendri clustered in the D. carpini species complex.

Typification details – Holotype, PERTH 739235; ex-type, CBS 534.93
Host – Lupinus angustifolius (Fabaceae)
Distribution – Oceania (Australia)
Notes – Williamson et al. (1994) nominated the name Diaporthe toxica for the sexual morph of the toxicogenic variety, Phomopsis leptostromiformis var. leptostromiformis. The sexual morph formed immersed, dense, clustered perithecia, necks penetrated the stroma surface revealing apical ostioles at the tip, unitunicate, clavate asci, 39–65 × 4.5–6.5 µm, ellipsoidal, 1-septate, hyaline ascospores, 9–14.4 × 4.5–7.5 µm. Diaporthe toxica produced uniloculate and multiloculate stromata, pycnidia, fusiform, 2-guttules, hyaline alpha-conidia, and filiform beta-conidia, tapered at one end (Williamson et al. 1994). Gomes et al. (2013) provided molecular data for D. toxica. This species is reported to cause stem blight in young lupins (Ostazeski & Wells 1960) and produce phomopsinsa mycotoxin that causes an animal liver disease called lupinosis (Culvenor et al. 1977). A pathogenicity study on Lupinus albus was conducted by Cowley et al. (2012).
In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered within the D. toxica species complex.

Diaporthe tortuosa (Fr.) Sacc., Syll. fung. (Abellini) 1: 630 (1882)
≡ Sphaeria tortuosa Fr., Syst. mycol. (Lundae) 2(2): 395 (1823)
≡ Valsa tortuosa (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 27–28: 55 (1874) [1873–74]
Typification details – N/A
Host – Pinus sp., Populus tremula (Salicaceae)
Distribution – Europe (Germany, Sweden)
Notes – Spharia tortuosa was synonymized into Diaporthe tortuosa by Saccardo (1882a). This species is characterized by aggregated, immersed perithecia, with short, subcylindrical ostiole (Saccardo 1882a). The asci and ascospore characters were not mentioned in the original paper. Sequence data is not available for this species.

Diaporthe toxicodendri = Valsa tortuosa = Spharia tortuosa

Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced Diaporthe torilicola to accommodate a new taxon identified on a dead aerial stem of Torilis arvensis in Italy. The detailed asexual morph characters were described and illustrated in Dissanayake et al. (2017b). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe torilicola clustered in the D. toxica species complex.

Diaporthe transiens = Valsa transiens = Spharia transiens

Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced Diaporthe carpini to accommodate a new taxon identified on a dead aerial stem of Valsa carpini in Italy. The detailed asexual morph characters were described and illustrated in Dissanayake et al. (2017b). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe carpini clustered in the D. toxica species complex.

Diaporthe transiens = Valsa transiens = Spharia transiens

Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced Diaporthe carpini to accommodate a new taxon identified on a dead aerial stem of Valsa carpini in Italy. The detailed asexual morph characters were described and illustrated in Dissanayake et al. (2017b). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe carpini clustered in the D. toxica species complex.

Diaporthe transiens = Valsa transiens = Spharia transiens

Distribution – Europe (Italy)
Notes – Dissanayake et al. (2017b) introduced Diaporthe carpini to accommodate a new taxon identified on a dead aerial stem of Valsa carpini in Italy. The detailed asexual morph characters were described and illustrated in Dissanayake et al. (2017b). The sexual morph is undetermined.
In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe carpini clustered in the D. toxica species complex.
Notes – The sexual morph description for Diaporthe transiens on the dead bark of Aesculus hippocastanum is available in Saccardo (1913b). This species is characterized by having scattered perithecia, cylindrical to filiform ostiole, fusoid ascii, bifoveolate at the apex, 33–36 × 7 μm, fusoid, 1-septate, slightly constricted, 4-guttules, hyaline ascospores, 15–16 × 4–4.3 μm. The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – N/A
 Host – Betula alba (Betulaceae)
 Distribution – Europe (Finland)
 Notes – Species description for Diaporthe transversalis on dead stems of Betula alba is available in Karsten (1873) and Saccardo (1882a). The species has 5–10 perithecia in a stroma, long ostiole, fusoid to elongate asci, 45 × 6 μm, fusoid to elongate, slightly curved, thinly 1–3-septate, 4-guttules, hyaline ascospores, 12–14 × 2–3 μm. The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – N/A
 Host – Platanus orientalis (Platanaceae)
 Distribution – Europe (France)
 Notes – Berlese et al. (1886) and Saccardo (1886) provided the sexual morph description for Diaporthe treccassium on dead stems of Platanus orientalis from Gaul, France. The species has white stroma, globose, black perithecia, circumscribed with a black circle, cylindrical, narrow at apex asci, 95–110 × 9–11 μm, elliptical, 1-septate, constricted, 2-guttules, hyaline ascospores, 18–22 × 7–9 μm (Saccardo 1886). The asexual morph is undetermined. Sequence data is not available for this species.

 Typification details – Holotype, BRIP 70737a
 Host – Cucumis melo (Cucurbitaceae)
 Distribution – Oceania (Australia)
 Notes – Diaporthe trevorrorwii was introduced by Tan & Shivas (2022) based on molecular data. It was found from stems of Cucumis melo in Queensland, Australia. In phylogenetic tree based on ITS, tub2, and tef1-α sequences, D. trevorrorwii is closely related to D. tectonendophytica (Tan & Shivas 2022) which is a member of D. sojae species complex (Norphanphoun et al. 2022, Fig. 1) with high bootstrap support.

Diaporthe trinucleata Niessl, Verh. nat. Ver. Brünn 14: 212 (1876)
 ≡ Diaporthopsis trinucleata (Niessl) Höhn., Annls mycol. 16(1/2): 114 (1918)
 Typification details – N/A
 Host – Eupatorium cannabinum (Asteraceae)
 Distribution – Asia (Brunei)
 Notes – Species descriptions of the sexual morph on dead stems of Eupatorium cannabinum are available in Niessl (1876b) and Saccardo (1882a). The species is characterized by clavate asci, 45–54 × 8–9 μm, oblong, 2-septate, constricted, 3-guttules, hyaline ascospores, 13–15 × 4–4.5 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tropicalis Speg., Anal. Soc. cient. argent. 9(4): 182 (1880)
 Typification details – Holotype, Spegazzini, 20 Feb. 1880
 Host – Bauhinia aculeate (Fabaceae)
 Distribution – South America (Argentina)
Notes – The sexual morph descriptions for *Diaporthe tropicalis* from dead branches of *Bauhinia aculeate* are available in Spegazzini (1880a) and Saccardo (1882a). The species has densely gregarious perithecia, nestling in bark or wood, short cylindrical ostiole, fusoid to clavate asci, 45 × 8–10 µm, aparpophysate, oblong, 1-septate and constricted, obtusely rounded at both ends ascospores, 12–14 × 4–5 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe tuberculosa (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

= *Chorostate ailanthi* (Sacc.) Traverso, Fl. ital. crypt., Pars 1: Fungi. Pyrenomycetae. Xylariaceae, Valsaceae, Ceratostomataceae (Florence) 1(2): 190 (1906)

= *Chorostate tuberculosa* (Ellis) Sacc., in Trotter, Syll. fung. (Abellini) 24(2): 750 (1928)

= *Diaporthe corymbosa* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 622 (1882)

= *Diaporthe tuberculosa* var. *corymbosa* (Cooke & Ellis) Wehnm., Monogr. Gen. *Diaporthe*

= *Engizostoma ailanthi* (Sacc.) Kuntze, Revis. gen. pl. (Leipzig) 3(3): 473 (1898)

= *Eutypella ailanthi* (Sacc.) Sacc., Syll. fung. (Abellini) 1: 151 (1882)

= *Phoma ailanthi* Sacc., Syll. fung. (Abellini) 3: 95 (1884)

= *Phomopsis ailanthi* (Sacc.) Died., Krypt.-Fl. Brandenburg (Leipzig) 9(2): 244 (1912)

= *Valsa corymbosa* Cooke & Ellis, Grevillea 8(no. 45): 15 (1879)

Typification details – N/A

Hosts – *Amelanchier alnifolia*, *A. canadensis*, *A. laevis*, *Amelanchier* sp. (Rosaceae)

Distribution – North America (Canada: Ontario, USA: Georgia, Michigan, New Jersey, New York)

Notes – The species was previously named *Valsa tuberculosa* Ellis and it was found on dead branches of *Amelanchier canadensis* in North America (Ellis 1881). Later, it was transferred to *Diaporthe* by Saccardo (1882a). The species is characterized by elliptical asci, 75 × 15 µm, with oblong to ellipsoid, 1-septate, constricted at septum, hyaline ascospores, 12–13 × 7–8 µm (Saccardo 1882a). The asexual morph was reported with ovate to fusoid, hyaline, 2-guttules conidia, 7 × 2.5 µm (the morphology of *Phoma ailanthic*). Sequence data is unavailable for this species.

Diaporthe tulasnei Niessl, Pyrenomyc. Germ.: 274 (1870)

= *Diaporthe tulasnei* f. *galegae* G. Winter [as ‘*galegae*’], Bolm Soc. broteriana, Coimbra, sér. 1 2: 45 (1884) [1883]

= *Phomopsis tulasnei* Sacc., Fl. ital. crypt. (Florence) 1(2): 222 (1906)

Typification details – N/A

Hosts – *Chenopodium ambrosioides* (Atriplicaceae), *Galega officinalis* (Fabaceae), *Hyoscyamus niger* (Solanaceae), *Oenothera biennis*, *O. longiflora* (Onagraceae), *Urtica dioica* (Urticaceae), *Verbascum pulverulentum* (Scrophulariaceae), *V. sinuatum* (Verbenaceae)

Distribution – Europe (Italy, Poland, Portugal, Spain)
Notes – *Diaporthe tulasnei* was introduced by Nitschke (1870). The species is characterized by 8-spored, oblong to clavate asci, 46–53 × 6–7 μm, fusiform, subhyaline ascospores, 10–14 × 3 μm (Nitschke 1870). The asexual morph is characterized by pycnidia appearing as in oblong and irregular black spots, erumpent, globose-depressed conidiomata, with ovate to oblong, hyaline alpha conidia, 7–8 × 2.5–3 μm, and fusiform, hyaline beta conidia, 15–18 × 1.5 μm (Saccardo & Saccardo 1906). Sequence data is unavailable for this species.

Typification details – Holotype, BRIP 62248a (includes ex-type)

Hosts – *Actinidia* spp. (Actinidiaceae), *Theobroma cacao* (Malvaceae)

Distribution – Asia (China), Oceania (Australia: Queensland)

Notes – *Diaporthe tulliensis* was described by Crous et al. (2015a) as a pathogen associated with coffee. The descriptions and illustrations of asexual morph are available in Crous et al. (2015a). Bai et al. (2017) identified this species to be a causal agent of stem canker of kiwifruits in China. Pathogenicity data are available in Bai et al. (2017).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe tulliensis* clustered in the *D. sojae* species complex.

Diaporthe tumulata (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 634 (1882)

≡ *Sphaeria tumulata* Cooke & Ellis, Grevillea 5(no. 34): [49] (1876)

Typification details – Holotype, Ellis 2366

Host – *Corylus americana* (Betulaceae)

Distribution – South America (USA: New Jersey)

Notes – The sexual morph description for this species on dead stems of *Corylus americana* is available in Saccardo (1882a). This species is characterized by a distinct black line surrounding one or more of the perithecia, descending deeply into the plant, with elongate ostiole piercing the bark, clavate asci, lanceolate, 1-septate, hyaline ascospores, 12 × 5 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – N/A

Host – *Lobelia tupae* (Campanulaceae)

Distribution – South America (Chile Los Lagos)

Notes – Spegazzini (1910) provided the sexual morph description of *Diaporthe tupae* on stems of *Lobelia tupae* in Los Lagos, Chile. The species has scattered, membranaceous perithecia, with a carbonaceous ostiole, sometimes protrudes from stroma, fusiform or slightly clavate asci, 50–55 × 10–12 μm, a paraphysate, biconical, with a clear septum that divides the cell into equal two cells, hyaline, 2-guttules ascospores, 12–14 × 4 μm (Spegazzini 1910). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BRIP 75017a

Host – *Decalobanthus peltatus* (Convolvulaceae)

Distribution – Oceania (Australia: Queensland)

Notes – *Diaporthe tuyouyou* was introduced by Tan & Shivas (2023) based on molecular data. It was found from leaf spot on *Decalobanthus peltatus* in Australia, Queensland. In the phylogenetic tree based on ITS, *tef1*-α, and *tub2* sequences, *D. tuyouyou* is closely related to *D. lithocarpi* but as a distinct species (Tan & Shivas 2023). However, the relationship among *D. lithocarpi*, *D. hongkongensis*, *D. salinicola*, and *D. tuyouyou* is still uncertain (Tan & Shivas 2023). Further investigations are needed to clarify the taxonomic status of these species within the *Diaporthe* genus.
Typification details – Holotype, BPI 748011; ex-type, CBS 139283
Hosts – Arachis hypogaea, Glycine max (Fabaceae), Camellia sinensis (Theaceae), Cucumis melo (Cucurbitaceae), Helianthus annuus (Asteraceae), Mangifera indica (Anacardiaceae), Magnolia shiluensis (Syn. Michelia shiluensis) (Magnoliaceae), Nelumbo nucifera (Nelumbonaceae), Vigna radiata (Fabaceae)
Distribution – Asia (China, Malaysia), North America (USA), Oceania (Australia), South America (Brazil)
Notes – Udayanga et al. (2015) described this species with the asexual morph. The sexual morph is undetermined. Diaportha ucekeri has been isolated as both an endophyte or a pathogen causing leaf spots, fruit rots and dieback on the above-mentioned hosts. Gao et al. (2016) synonymized D. miriciae under D. ucekeri based on their phylogenetic analysis. The same result was observed in the phylogenetic tree of Norphanphoun et al. (2022). Pathogenicity studies for D. ucekeri were done by Thompson et al. (2018), Lim et al. (2019), and Liao et al. (2023b).
 In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaportha sojae species complex.

Typification details – Holotype, BJFC-S1503; ex-type, CFCC 52592
Host – Acer caudatum (Syn. Acer ukurunduense) (Sapindaceae)
Distribution – Asia (China)
Notes – Diaportha ukurunduensis was introduced by Yang et al. (2018a) from symptomatic twigs of Acer caudatum in Shaanxi, China. This species can be distinguished from the phylogenetically closely related species D. citrichinensis in longer conidiophores and shorter alpha conidia (Yang et al. 2018a). The detailed asexual morph characters were described and illustrated by Yang et al. (2018a).
 In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the D. eres species complex (= D. alnea species complex).

Typification details – Holotype, NY, Bartholomew 1869
Host – Ulmus sp. (Ulmaceae)
Distribution – North America (Canada)
Notes – The sexual morph of Diaportha ulmicola was described from the dead branches of Ulmus sp. in Ontario, Cannada (Saccardo 1895). The species has 8–12 perithecia in a pustule, making slightly blackened on the surface, with cylindrical, straight ostiole, oblong to fusoid asci, 40 × 7 μm, and oblong to elliptical, not at all or only constricted in the middle, 3–4-guttules ascospores (Ellis & Everhart 1893c). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, BJFC CF202212142; ex-type living culture, CFCC 58828; other living culture, CFCC 58829
Host – Ulmus pumila (Ulmaceae)
Distribution – Asia (China)
Notes – Diaportha ulmina was introduced by Bai et al. (2023). The species is associated with canker disease of Ulmus pumila. Phylogenetically, this species is closely related to D. huairouensis (Bai et al. 2023). The nucleotide pairwise comparison of ITS, cal, his3, tefl-α and tub2 sequences indicated that D. ulmina differs from D. huairouensis (Bai et al. 2023). Furthermore, these two species are also different in their host association (Bai et al. 2022, 2023). Therefore, Bai et al. (2023) introduced D. ulmina as a new species.
Diaporthe umbellatarum (Schwein.) Ellis & Everh., N. Amer. Pyren. (Newfield): 739 (1892)
Typification details – N/A
Host – Apiaceae (or Umbelliferae)
Distribution – Asia (Palestine)
Notes – *Diaporthe umbellatarum* was described from a stem of an Apiaceae plant in Palestine. The species is characterized by scattered perithecia, with emergent, short, cylindrical ostiole, 35–40 × 5–6 μm asci, with biseriate, oblong, 1-septate, slightly constricted ascospores, 10–12 × 3 μm (Ellis & Everhart 1892). The asexual morp is undetermined. Sequence data is available for this species.

Typification details – Holotype, HMAS 247091; ex-type (dried culture), CGMCC 3.18293
Host – Unidentified host
Distribution – Asia (China-Laos border)
Notes – Gao et al. (2017) described *Diaporthe undulata* from diseased leaves from an unidentified host in China-Laos border, China. The species is phylogenetically different from the closely related species *D. biconispora* based on ITS, tef1-α and tub2 loci. It differs from other *Diaporthe* species in the obpyriform conidiophores and shorter, wider alpha conidia. Beta conidia were not observed. The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe undulata* is related to the *D. biconispora* species complex. Currently, this species is accepted as a singleton species in *Diaporthe*. However, more gene and strain collections of this species are needed to confirm its placement.

Typification details – Holotype, ZJUD52H; ex-type, ZJUD52 = CGMCC 3.17569
Hosts – *Citrus unshiu* (Rutaceae), *Fortunella margarita*, *Vitis vinifera* (Vitaceae)
Distribution – Asia (China)
Notes – *Diaporthe unshiuensis* was introduced by Huang et al. (2015) to accommodate the taxon which was isolated as an endophyte and a pathogen from fruits of *Citrus unshiu* with unidentified symptoms, on a non-symptomatic branch and twigs of *Fortunella margarita* and twigs with dieback symptoms of *Vitis vinifera* in Zhejiang, China. The descriptions and illustrations of asexual morph are available in Huang et al. (2015). The sexual morph is undetermined. Pathogenicity tests confirmed this species can cause dieback symptoms on the grapevine (Manawasinghe et al. 2019). Previously, Du et al. (2021) reported *D. unshiuensis* as a weak pathogen on kiwifruit.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. sojae* species complex.

Diaporthe vacillans (De Not.) Sacc., Syll. fung. (Abellini) 1: 694 (1882)
≡ *Sphaeria vacillans* De Not., Sfer. Ital.: 21 (1863)
Typification details – N/A
Host – Unidentified host
Distribution – Europe (Italy)
Notes – This species was introduced as *Sphaeria vacillans* from stems of an unidentified herbaceous and was later transferred to *Diaporthe* (Saccardo et al. 1882a). *Diaporthe vacillans* has numerous asci, without paraphyses, hyaline, fusoid, elongate, 4-guttules ascospores 24–25 × 5 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.
Diaporthe valerianae Fuckel, Jb. nassau. Ver. Naturk. 25–26: 319 (1871)

Typification details – N/A
Host – *Valeriana officinalis* (Caprifoliaceae)
Distribution – Europe (Germany)

Notes – The sexual morph for this species on stalks of *Valeriana officinalis* is available in Fuckel (1871) with scattered perithecia, immersed in a stroma, slightly protruding, very short ostiole, oblong asci, fusiform, 3-septates, 4-guttules, hyaline ascospores, 12 × 3.5 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe valida Nitschke, Pyrenomyc. Germ. 2: 262 (1870)

Typification details – N/A
Host – *Myrica cerifera* (Myricaceae)
Distribution – Europe (Germany)

Notes – The sexual morph of the species on dead thick branches of *Myrica cerifera* is given in Germany by Nitschke (1870). *Diaporthe valida* has immersed, aggregated, often 4–20 perithecia in a stroma, clavate, sessile asci, 50–56 × 10 μm, 1-septate, finally constricted in the middle, 2–4-guttules, yellowish ascospores, 14–16 × 5 μm (Nitschke 1870). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe valparadisiensis Speg., Revta Fac. Agron. Vet. Univ. nac. La Plata, Ser. 2 6(1): 64 (1910)

Typification details – Holotype, Petrak s.n.
Host – *Lithraea caustica* (Anacardiaceae)
Distribution – South America (Chile)

Notes – *Diaporthe valparadisiensis* was introduced from dead branches of *Lithraea caustica*, in Valparaíso, Chile. The species is characterized by fusiform asci, 70 × 8 μm, aparaphysate, hyaline ascospores, 14–15 × 4 μm. A detailed sexual morph description is available in Spegazzini (1910). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe valsiformis (Rehm) Petr., Hedwigia 62: 290 (1921)

≡ *Chorostate valsiformis* f. *valsoidea* Rehm, Annls mycol. 11(2): 152 (1913)

Typification details – Holotype, Petrak s.n.
Host – *Alnus glutinosa* (Betulaceae)
Distribution – Europe (Germany)

Notes – *Diaporthe valsiformis* was initially introduced as *Chorostate valsiformis* from branches of *Alnus glutinosa* in Germany. Later, Petrak (1921c) synonymized it under *D. valsiformis*. The species is characterized by having fusoid to subclavate, a short pedicel ascus, with paraphyses, cylindrical, very slightly biconical ascospores 14–15 × 4 μm (Saccardo 1896). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe vangoghii Gomzhina, in Gomzhina & Gannibal, Mycologia 114(3): 565 (2022)

Typification details – Holotype, LEP 87903: ex-type, MF-Ha18-046
Host – *Helianthus annuus* (Asteraceae)
Distribution – Russia

Notes – *Diaporthe vangoghii* was introduced by Gomzhina & Gannibal (2022). The species was found on stems of *Helianthus annuus* in Russia. It has pycnidial conidiomata scattered on PSA and OMA, often with one or multiple ostiolate necks, with straight or slightly curved, occasionally septate, subhyaline conidiophores, subcylindrical conidiogenous cells, produced bean-shaped, obovoid, ellipsoidal, guttulate, hyaline alpha conidia, filiform, curved beta conidia, and elongate cylindrical, elongate stiliform, guttulate, hyaline gamma conidia. A detailed description of asexual morph for this species was given in Gomzhina & Gannibal (2022). The sexual morph is
undetermined. Phylogenetic analysis based on ITS, cal, his3, tefl-a, and tub2 indicated that this species clustered with some members from *D. sojae* species complex, and it is also sister to *D. monetii* with high bootstrap supports (Gomzhina & Gannibal 2022).

Diaporthe vangueriae Crous, Persoonia 32: 227 (2014)
Typification details – Holotype, CBS H-21697; ex-type, CBS 137985
Host – *Vangueria infausta* (Rubiaceae)
Distribution – Africa (Zambia)
Notes – *Diaporthe vangueriae* was found on twigs of *Vangueria infausta* in Zambia. The asexual morph description is available in Crous et al. (2014b). This species was closely related to *D. inconspicua*, *D. anacardii* and *D. neotheicola* in Crous et al. (2014b).

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. oncostoma* species complex and is closely related to *D. macinthoshii*.

Diaporthe varians (Curr.) Sacc., Syll. fung. (Abellini) 1: 614 (1882)
≡ *Diatrype varians* Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]
≡ *Valsa aceris* (Nitschke ex Fuckel) Massee, Grevillea 15(no. 76): 117 (1887)
Typification details – Holotype, Currey, Jun. 1855
Host – *Acer* sp. (Sapindaceae)
Distribution – Europe (United Kingdom)
Notes – This species was initially introduced as *Sphaeria varians* from the stems and bark of *Acer* sp. Saccardo (1882a) synonymized it under *Diaporthe varians*. The species is characterized by having subglobose perithecia, conical ostiole, sometimes umbilicate at the apex, the masses of perithecia penetrate the bark in long parallel lines, and 1-septate, constricted at the middle, hyaline ascospores, with a granular endochromes (Currey 1859). The asexual morph is undetermined.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), *D. varians* was used to describe this species complex based on the publication year of *D. aceris* (1870) species that was synonymized.

Typification details – Holotype, BRIP 57887a (includes ex-type)
Host – *Psidium guajava* (Myrtaceae)
Distribution – Oceania (Australia)
Notes – The asexual morph description for *Diaporthe vawdreyi* is available in Crous et al. (2015a). It has alpha conidia that are shorter than those of *Phomopsis destructa* (11–30 μm) and beta conidia that are longer than those of *P. psidii* (14.5–18.5 μm) which are also recorded from *Psidium guajava*. The detailed asexual morph characters were described and illustrated by Crous et al. (2015a). The sexual morph is undetermined. Although *D. vawdreyi* was isolated from a rotted fruit, it is not known whether this fungus is a pathogen, opportunistic saprobe, or an endophyte.

In the phylogenetic analyses of Norphanphoun et al. (2022, Fig. 1), this species clustered in the *D. vawdreyi* species complex.

Typification details – Holotype, HMAS 247087; ex-type, CGMCC 3.18286
Hosts – *Callerya cinerea* (Fabaceae), *Camellia sinensis* (Theaceae), *Neolitsea* sp., (Fabaceae)
Distribution – Asia (China)
Notes – Gao et al. (2017) introduced *Diaporthe velutina* and only the asexual morph is known. This species was isolated from both healthy and diseased leaves of *Camellia sinensis* in Jiangxi, China. This species provides evidence for lifestyle switching in *Diaporthe*. *Diaporthe
velutina has pycnidial conidiomata embedded in PDA, with cream translucent conidial droplets exuding from the central ostioles, fusoid to ellipsoid or clavate, aseptate, hyaline alpha conidia, and smooth, curved, hyaline beta conidia (Gao et al. 2017). Pathogenicity data are unavailable.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), this species clustered in the Diaporthe oncostoma species complex.

- Typification details – N/A
- Host – Verbena nodiflora (Verbenaceae)
- Distribution – Europe (Italy)
- Notes – The description and illustration of the sexual morph of Diaporthe verbenae which occurs on stems of Verbena nodiflora are available in Saccardo (1902). This species is characterized by having black, immersed stromata, with small globose perithecia, very long, cylindrical protruding ostiole, capitulate to papillate apex, subcylindrical asci, 40–50 × 8–10 μm, ellipsoid, 1-septate, constricted at the septum, 4-guttules, hyaline ascospores, 11–13 × 2.8–3 μm. Spermatia are oblong, often unequal, with 2-guttules, 5 × 2 μm (Saccardo 1902). Sequence data is not available for this species.

Diaporthe verecunda Sacc. & Flageolet, Atti del Congr. bot. di Palermo: 52 (1902)
- Typification details – N/A
- Host – Salix sp. (Salicaceae)
- Distribution – Europe (France)
- Notes – Diaporthe verecunda was reported from the inner bark of Salix sp. in France (Saccardo 1905). The detailed description of its sexual morph is available in Saccardo (1905) with immersed, membranaceous perithecia, whitish inside, small piercing ostiole, fusoid asci, 45–50 × 6.5–7.5 μm, aparaphysate, fusoid, slightly constricted in the middle, with 4-guttules, hyaline ascospores, 11–13 × 2.8–3 μm. The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe verniciicola C.M. Tian & Q. Yang, in Yang, Jiang & Tian, MycoKeys 77: 56 (2021)
- Typification details – Holotype, BJFC-S1622; ex-type, CFCC 53109
- Host – Vernicia montana (Euphorbiaceae)
- Distribution – Asia (China)
- Notes – Diaporthe verniciicola was introduced by Yang et al. (2021a). It was found from branches of Vernicia montana in Jiangxi, China. The species was reported based on morphological characters of its asexual morph and molecular phylogeny of combined genes (ITS, cal, his3, tef1-α, and tub2). Sexual morph not observed. The morphological species was described with conidiophores reduced to conidiogenous cells, straight or sinuous, unbranched conidiogenous cells, with ellipsoidal to fusiform, aseptate, 1–2-guttulaes, hyaline alpha conidia, beta conidia was not observed. A detailed description and illustration were given by Yang et al. (2021a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe verniciicola clustered in the D. carpini species complex.

- Typification details – Holotype, Petrak, Mar. 1914; Petrak, Oct. 1914
- Host – Veronica speciosa (Plantaginaceae)
- Distribution – Europe (Germany)
- Notes – Diaporthe veronicae occurs on dead branches of Veronica speciosa in Germany (Petrak 1916). The sexual morph of this species was described in Petrak (1916), with scattered, mostly immersed, membranaceous perithecia, short, thin, and often slightly curved ostiole, cylindrical to fusoid asci, 42–50 × 5–10 μm, oblong to fusoid, 1–2-septate, slightly constricted at
the septum or not, 2–3-guttules ascospores, 9–14 × 4–5 μm (Petrak 1916). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe verrucella (Fr.) Starbäck, Bih. K. svenska VetenskAkad. Handl., Afd. 3 19(no. 2): 27 (1894)

≡ *Sphaeria verrucella* Fr., Syst. mycol. (Lundae) 2(2): 367 (1823)

Typification details – N/A

Host – *Alnus incana* (Betulaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe verrucella* was initially introduced as *Sphaeria verrucella*, fungi on *Alnus incana* in Germany. However, Starbäck (1894) transferred it to *Diaporthe* based on morphological similarities. Morphology of the sexual morph was described in Starbäck (1894) with densely aggregated perithecia, short carbonaceous ostiole, oblong to clavate asci, 50 × 10 μm, elongate or ellipsoid to elongate, obtuse at both ends (with setiform pseudo-appendage), 1-septate, not constricted, hyaline ascospores, 12–15 × 4–5 μm (Starbäck 1894). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe vexans (Sacc. & P. Syd.) Gratz, Phytopathology 32: 542 (1942)

≡ *Ascochyta hortorum* (Speg.) C.O. Sm., Annual Report of the Vermont Agricultural Experimental Station 70: 16 (1905)

≡ *Phoma solani* Halst., Report of the New Jersey State Agricultural Experimental Station: 277 (1892)

≡ *Phoma vexans* Sacc. & P. Syd., Syll. fung. (Abellini) 14(2): 889 (1899)

Typification details – N/A

Distribution – Africa (Mauritius, South Africa, Tanzania), Asia (Brunei Darussalam, China, Hong Kong, India, Korea, Malay Peninsula, Myanmar, Sri Lanka, Taiwan, The Philippines), Europe (Poland), North America (Barbados, Canada, Cuba, Dominican Republic, Haiti, Jamaica, Mexico, Panama, Puerto Rico, USA: Alabama, Florida, Hawaii, Iowa, Mississippi, Missouri, North Carolina, Oklahoma, Virgin Islands), Oceania (Australia, New Caledonia), South America (Argentina, Brazil, Colombia, Venezuela)

Notes – The species was reported to cause fruit rot, leaf spot, stem blight and tip over disease on *Solanum melongena* (Bhanushree et al. 2021). The morphological character of this species was reported with both morphs. The sexual morph is characterized by perithecial ascomata, beaks sinuous, carbonaceous, irregular, with clavate, sessile asci, 24–44 × 5–12 μm, narrowly ellipsoid to bluntly fusoid, 1-septate, constricted at the septum, hyaline ascospores, 9–12 × 3.0–4.5 μm (see Gratz 1942). The asexual morph has pycnidial conidiomata, subepidermal, erumpent, dark, thick-walled, flattened to globose, varying in size, often 100–300 μm diam., with or without a beak, with simple or branched, sometimes septate, hyaline phialides, 10–16 μm long, arising from the innermost layer of cells lining the cavity. Alpha conidia are subcyllindrical, aseptate, hyaline, 5–8 × 2–3 μm, and beta conidia are filiform, curved, hyaline, septate, 18–32 × 0.5–2.0 μm (see Edgerton & Moreland 1921, Sherf & MacNab, 1986, Singh 1987, CABI Compendium 2022).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe vexans* clustered in the *D. sojae* species complex.
Diaporthe viburni Dearn. & Bisby, Hainesia viburni: 76 (1929)

Typification details – N/A

Hosts – *Viburnum lentago, V. rufidulum* (Adoxaceae)

Distribution – Europe (Georgia), North America (Canada, USA: Iowa)

Notes – *Diaporthe viburni* was reported by Bisby et al. (1929) on a branch of *Viburnum* sp. in Canada. The sexual morph was described and illustrated in Gilman & McNew (1940) with clavate asci, 55–67 × 8–12 μm, with hyaline, fusoid to oblong to ellipsoid, 1-septate ascospores, with 4-guttules and slightly constricted, 14–18 × 4–6 μm. The asexual morph is undetermined.

Only ITS sequence is available for this species, but without morphological characters (Vu et al. 2019). In the ITS phylogenetic tree of Norphanphoun et al. (2022, Fig. 3), *D. viburni* clustered with some members of *D. eres* species complex (= *D. alnea* species complex).

Diaporthe viciae W. Zhao, Q. Ning & J.Y. Yan, in Abeywickrama, Qian, Jayawardena, Li, Zhang, Guo, Zhang, Zhang, Yan, Li, Guo, Hyde, Peng & Zhao, Mycosphere 14(1): 34 (2023)

Typification details – Holotype, JZBH 320179; ex-type, JZB 320179

Host – *Vicia villosa* (Fabaceae)

Distribution – Asia (China)

Notes – *Diaporthe viciae* was reported by Abeywickrama et al. (2023). This species was found from healthy stems of *Vicia villosa* in Guangxi, China. The species was reported based on morphological characters of its asexual morph and molecular phylogeny of combined genes (ITS, *cal, his3, tef1-α*, and *tub2*). Sexual morph not observed. The morphological characteristics of the species were observed from the colony on PDA and described with oval to round, black, superficial conidiomata; cylindrical, aseptate, densely aggregated conidiophore; fusiform or oval hyaline, with 2–5-guttules of alpha conidia, beta conidia not observed. A detailed description and illustration were given by Abeywickrama et al. (2023).

Diaporthe vincae Sacc., Syll. fung. (Abellini) 1: 656 (1882)

= *Sphaeria vincae* Cooke, Grevillea 5(no. 34): 63 (1876)

Typification details – Holotype, K(M), anon. s.n. (Cooke, Fung. Brit. ii, no. 493)

Host – *Vinca* sp. (Apocynaceae)

Distribution – Europe (United Kingdom)

Notes – *Diaporthe vincae* was reported by Saccardo (1882a) on stems of *Vinca* sp in the United Kingdom. This species is characterized by immersed perithecia, scarcely elongate ostiole, papillate, subclavate asci, and fusiform, 4-guttules, hyaline ascospores, 20–22 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, JZBH 320071; ex-type, JZB 320071

Host – *Vitis vinifera* (Vitaceae)

Distribution – Asia (China)

Notes – *Diaporthe viniferae* was introduced based on asexual morph characters and phylogenetic analysis by Manawasinghe et al. (2019). The species was found on the diseased trunk of grapevine in China. It has superficial, scattered pycnidia which are mostly solitary on PDA, fusiform or oval, hyaline, 2-guttules alpha conidia, and hamate, filiform, tapering toward both ends, aseptate, hyaline beta conidia (Manawasinghe et al. 2019). Conidiophores and conidiogenous cells were not observed. The sexual morph is undetermined. A pathogenicity test was done by Manawasinghe et al. (2019), which confirmed the species caused trunk disease of *Vitis vinifera*.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe viniferae* clustered in the *D. arecae* species complex.
Diaporthe virgiliae Maching., Dreyer & Roets, Pl. Path. 64(5): 1153 (2015)

Typification details – Holotype, PREM 61104; ex-type, CMW 40755 = CBS138788
Host – *Virgilia oroboides* (Fabaceae)
Distribution – Africa (South Africa)

Notes – *Diaporthe virgiliae* was introduced by Machingambi et al. (2015) from roots, which caused the death of endemic *Virgilia oroboides* trees in Western Cape, South Africa. The species has conidia exuding from pycnidia which are cream to peach-coloured droplets, produced fusoid to ellipsoidal, bases obtuse to subtruncate, 2-guttules alpha conidia, and needle-like, curved beta conidia. The detailed asexual morph characters were described and illustrated by Machingambi et al. (2015). The sexual morph is undetermined. A pathogenicity test was conducted by Machingambi et al. (2015) and confirmed that this fungus causes root disease in *V. oroboides*.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe virgiliae* clustered in the *D. eres* species complex (= *D. alnea* species complex).

Typification details – Holotype, IMI 352074
Host – *Vitis labrusca* (Vitaceae)
Distribution – Asia (China, Japan, Taiwan)

Notes – *Diaporthe vitimegaspora* was first reported as *Phomopsis vitimegaspora* in Taiwan by Kuo & Leu (1998) on dead branches of grapevine, and later it was synonymized to *Diaporthe* by Rossman et al. (2015). Morphology of the asexual morph was described and illustrated in the original publication with abundant, immersed, becoming erumpent conidiomata, ostioles with paraphyses, and oblong, 1-guttules, alpha conidia, unicellular, hyaline, while producing beta conidia with filiform and curved shaped, hyaline (Kuo & Leu 1998). The sexual morph is undetermined. Pathogenicity test conducted on the grapevine and confirmed that it causes shoot blight and dead arm disease of grapevine (Kuo & Leu 1998, Kajitani & Kanematsu 2000).

Diaporthe vitimegaspora only comprises a single ITS sequence (strain STE-U2675). This sequence grouped within the *D. sojae* species complex (Norphanphoun et al. 2022, Fig. 3).

Diaporthe vochysiae Noriler, Gomes, & Gliemke, Fitoterapia 138(78): 104273 (2018)

Typification details – Holotype, UPCB 92976; ex-type, LGMF1583
Host – *Vochysia divergens* (Vochysiaceae)
Distribution – South America (Brazil)

Notes – *Diaporthe vochysiae* was reported by Noriler et al. (2018) as an endophytic fungus on *Vochysia divergens*, a medicinal plant in Brazil. The asexual morph characters of this species are available in Noriler et al. (2018). The sexual morph is undetermined. This fungus was reported to produce two new carboxamides, vochysiamides A and B, with activity against clinical bacteria (Noriler et al. 2019).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe vochysiae* clustered in the *D. sojae* species complex.

Typification details – Holotype, AMH 5213
Host – Unidentified host
Distribution – Asia (India)

Notes – *Diaporthe wehmeyeri* was reported by Pande & Rao (1991) on the dead twigs of an unidentified host in Maharashtra, India. Morphology of the sexual morph was described and illustrated in the original publication with clavate to cylindrical asci, 40–45 × 5–6 µm, with paraphyses, and oblong, 1-septate and slightly constricted, with 4-guttules, hyaline ascospores, 12–
Diaporthe woroniniae clustered in the or subfusiform, 1 with small pustules, aggregated, 2 Diaporthe and on dead branches of Diaporthe woolworthii (genera in region, 2 subobclavate conidiogenous cells, produced fusiform, unicellular, slightly constricted in the mid branched, cylindrical, septate, hyaline conidiophores, enteroblastic, phialidic, simple, dense groups, black, up to 2 mm wide, unilocular, thick–walled peridium, with simple, sometimes branched, cylindrical, septate, hyaline conidiophores, enteroblastic, phialidic, simple, cylindrical to subobclavate conidiogenous cells, produced fusiform, unicellular, slightly constricted in the mid region, 2–guttules, hyaline ascospores, 8–10 × 2.5–3.5 μm. The asexual morph is characterized by pycnidial conidiomata, solitary or in dense groups, black, up to 2 mm wide, unilocular, thick–walled peridium, with simple, sometimes branched, cylindrical, septate, hyaline conidiophores, enteroblastic, phialidic, simple, cylindrical to subobclavate conidiogenous cells, produced fusiform, unicellular, slightly constricted in the mid region, 2–guttules, hyaline alpha conidia, 6–8 × 2–2.5 μm, while beta conidia were not reported (Punithalingam 1974b).

In Norphanphoun et al. (2022), the species formed a strongly supported clade with other genera in Diaporthaceae. Hence, it was not introduced as member of any species complex (Figs 1–7, Norphanphoun et al. 2022). More collection is needed to confirm the species position.

Diaporthe winteri J. Kunze ex Sacc., Syll. fung. (Abellini) 1: 658 (1882)
≡ Phomopsis winteri (J. Kunze ex Sacc.) Petr., Annls mycol. 17(2/6): 81 (1920)
Type – Holotype, Academy of Natural Sciences (PH), PH00002672
Host – Ononis repens, O. spinosa (Fabaceae)
Distribution – Europe (Czech Republic, Czechoslovakia, Switzerland)
Notes – Diaporthe winteri was reported by Saccardo (1882a) on the dead stems of Onions repens. The morphology of the sexual morph was described in the original publication with gregarious, immersed perithecia, cylindrical ostiole, fusoid to clavate asci, 42–46 × 7–9 μm, with paraphyses, fusoid, 1-septate, hyaline ascospores, 10 × 3.5 μm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

≡ Phoma rossiana Sacc., Annls mycol. 1(3): 222 (1903)
≡ Phomopsis rossiana (Sacc.) Sacc. & D. Sacc., Syll. fung. (Abellini) 18: 265 (1906)
Typification details – Holotype, IMI 166508
Hosts – Lupinus albus, L. angustifolius, L. cosentinii, L. luteus, L. pilosus, L. polyphyllus, Lupinus sp. (Fabaceae)
Distribution – Africa (South Africa, United Republic of Tanzania), Asia (Georgia), Europe (Georgia, Poland), North American (USA: Florida), Oceania (Australia), South America (Brazil)
Notes – The species was found from stems of Lupinus angustifolius in Western Australia, with the description and illustrations of both morphs in Punithalingam (1974b). The sexual morph is characterized by scattered ascomata, solitary or aggregated, numerous, globose, up to 500 μm wide, black, with long ostiolar necks, up to 2 mm, clavate, sessile asci, evanescent, 35–45 × 5–6 μm, 2-seriate, ellipsoidal, 1-septate, constricted at some septate, 3–4–guttules, hyaline ascospores, 8–10 × 2.5–3.5 μm. The asexual morph is characterized by pycnidial conidiomata, solitary or in dense groups, black, up to 2 mm wide, unilocular, thick-walled peridium, with simple, sometimes branched, cylindrical, septate, hyaline conidiophores, enteroblastic, phialidic, simple, cylindrical to subobclavate conidiogenous cells, produced fusiform, unicellular, slightly constricted in the mid region, 2–guttules, hyaline alpha conidia, 6–8 × 2–2.5 μm, while beta conidia were not reported (Punithalingam 1974b).

In Norphanphoun et al. (2022), the species formed a strongly supported clade with other genera in Diaporthaceae. Hence, it was not introduced as member of any species complex (Figs 1–7, Norphanphoun et al. 2022). More collection is needed to confirm the species position.

Diaporthe woolworthii (Peck) Sacc., Syll. fung. (Abellini) 1: 615 (1882)
Typification details – Holotype, Peck s.n.
Hosts – Quercus sp. (Fagaceae), Carya sp. (Juglandaceae)
Distribution – North America (USA)
Notes – Diaporthe woolworthii was first introduced by Peck (1876) as Valsa woolworthii, and on dead branches of Quercus or Carya. Later Saccardo (1882a) synonymized the species under Diaporthe based on morphological similarities. The morphology of the sexual morph was described with small pustules, aggregated, 2–6 perithecia, nestling in the inner bark, crowded ostiole, oblong or subfusiform, 1-septate, with 4–guttules, hyaline ascospores (Peck 1876, Saccardo 1882a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), Diaporthe woolworthii clustered in the D. carpini species complex.

Typification details – N/A
Host – *Sorbus aucuparia* (Rosaceae)

Distribution – Russia

Notes – *Diaporthe woroniniae* was reported on dead branches of *Sorbus aucuparia* in Russia. The sexual morph was described in Saccardo & Sydow (1899a) with scattered, numerous stromata, containing numerous subglobose perithecia, cylindrical ostiole, subcylindrical asci, 80 × 12 µm, ellipsoidal, 1-septate, constricted, 4-guttules ascospores, 17.5–18 × 6–6.5 µm (Saccardo & Sydow 1899a). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe xanthii Spec., Anal. Mus. nac. B. Aires, Ser. 3 12: 366 (1909)

Typification details – Holotype, LPS, Spegazzini, Oct. 1906

Host – *Xanthium spinosum* (Asteraceae)

Distribution – South America (Argentina)

Notes – *Diaporthe xanthii* was reported by Spegazzini (1909) on rotten stems of *Xanthium spinosum* in Buenos Aires, Argentina. The sexual morph was described in the original publication with irregularly dispersed, immersed, membranaceous perithecia, carbonaceous ostiole, fusoid asci, 50–60 × 8–9 µm, and fusoid to subcylindrical, 1-septate, straight to slightly curved, with 2-guttules, hyaline ascospores, 15–16 × 4 µm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, Oct. 1894

Host – *Xanthium strumarium* (Asteraceae)

Distribution – South America (Argentina)

Notes – *Diaporthe xanthiicola* was reported by Spegazzini (1898) on dead branches and trunks of *Xanthium strumarium* in Buenos Aires, Argentina. Morphology of the sexual morph was described and illustrated in the original publication with gregarious, immersed, thin membranaceous perithecia, short carbonaceous ostiole, fusoid asci, 50–55 × 7–8 µm, elliptical to cylindrical, 1-septate, slightly constricted, with 4-guttules, hyaline ascospores, 12–13 × 3.5–4 µm (Spegazzini 1898). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe xishuangbannaensis S. Hongsanan & K.D. Hyde, nom. nov.

Index Fungorum number: IF900765; Facesoffungi number: FoF14510

≡ *Diaporthe chinensis* N.I. de Silva, Lummyong & K.D. Hyde, in de Silva et al., Mycosphere 12(1): 188 (2021); Nom. illegit., Art. 53.1

Typification details – Holotype, MFLU 20-0587

Host – *Magnolia candollei* (Magnoliaceae)

Distribution – Asia (China)

Notes – de Silva et al. (2021) established *Diaporthe chinensis* N.I. de Silva et al. However, Dong et al. (2021) also published fungi with the same species name. Song & Landrein (2022) proposed the renaming of *D. chinensis* H. Dong et al. to be *D. dongii* (H. Dong et al.) S. J. Song & Landrein, but this became invalid (Art. F.5.1, MycoBank 2023). Based on the ICNafp, *D. chinensis* Dong et al. was published earlier (Published 22 March 2021), thus *D. chinensis* de Silva et al. (published on 25 March 2021) is regarded as an illegitimate name according to Index Fungorum (2023). Here, we provide the new name *D. xishuangbannaensis* for *D. chinensis* N.I. de Silva.

Based on the phylogenetic analysis of de Silva et al. (2021), *Diaporthe xishuangbannaensis* (as *D. chinensis* N.I. de Silva) clustered separately as a distinct species, and sister to *D. yunnanensis*. Morphologically, the alpha conidia of *D. xishuangbannaensis* are larger than those of *D. yunnanensis* (10–14 × 3–6 µm vs. 3–6.5 × 1–2.5 µm; Gao et al. 2017, de Silva et al. 2021). In the phylogenetic tree of Song & Landrein (2022), *D. xishuangbannaensis* (as *D. chinensis* N.I. de Silva) was related to *D. eleutharrhenae* which is an invalid species. However, it can be
distinguished from _D. eleutharrhenae_ by having longer alpha conidia and the absence of beta conidia.

- Typification details – Holotype, HMAS 247083; ex-type, CGMCC 3.18283 = LC 6744
- Host – _Camellia sinensis_ (Theaceae)
- Distribution – Asia (China)
- Notes – _Diaporthe xishuangbanica_ was introduced by Gao et al. (2017). This fungus caused disease on the leaves of _Camellia sinensis_ in Yunnan, China. The asexual morph produces pycnidia, scattered on the pine needle, with fusiform, hyaline, multi-guttules alpha conidia. Beta conidia not observed. The asexual morph characters were described and illustrated by Gao et al. (2017). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe xishuangbanica_ clustered in the _D. arecae_ species complex.

Diaporthe xunwuensis C.M. Tian & Q. Yang, in Yang, Jiang & Tian, MycoKeys 77: 57 (2021)
- Typification details – Holotype, BJFC-C003; ex-type, CFCC 53086
- Host – Undetermined wood
- Distribution – Asia (China)
- Notes – _Diaporthe xunwuensis_ was reported by Yang et al. (2021a). It was found from unknown dead wood in Jiangxi, China. The species was reported based on morphological characters of its asexual morph and molecular phylogeny of combined genes (ITS, _cal, his3, tef1-a_, and _tub2_). Sexual morph not observed. The morphological characters of this species were observed from PDA culture and described with pycnidial, globose, solitary or aggregated, dark brown to black conidiomata; cylindrical, phialidic, unbranched, hyaline conidiophores, ellipsoidal to fusiform, aseptate, 2-guttules, hyaline alpha conidia, beta conidia not observed. A detailed description and illustration were given by Yang et al. (2021a).

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe xunwuensis_ clustered in the _D. vawdreyi_ species complex.

Diaporthe yerbae Speg., Anal. Mus. nac. B. Aires, Ser. 3 17(10): 122 (1908)
- Typification details – Holotype, LPS, Spegazzini s.n.
- Host – _Ilex paraguayensis_ (Aquifoliaceae)
- Distribution – South America (Argentina)
- Notes – _Diaporthe yerbae_ was reported by Spegazzini (1908), on dead branches of _Ilex paraguayensis_ in Argentina. Morphology of the sexual morph was described and illustrated in the original publication with densely gregarious perithecia, thin carbonaceous ostioles, clavate asci, 35–40 × 8 µm, with cylindrical to ellipsoidal, 1-septate, slightly constricted, with 4-guttules, hyaline ascospores, 10–11 × 3–4 µm (Spegazzini 1908). The asexual morph is undetermined. Sequence data is not available for this species.

- Typification details – Holotype, HMAS 247096; ex-type, CGMCC 3.18289 = LC 6186
- Host – _Coffea_ sp. (Rubiaceae)
- Distribution – Asia (China)
- Notes – _Diaporthe yunnanensis_ was reported by Gao et al. (2017). The species was isolated as an endophyte of _Coffea_ sp. in Yunnan, China. The asexual morph is characterized by pycnidia exuding conidia that are white to cream, fusiform, with one end obtuse and the other acute, 2-guttules alpha conidia, and aseptate, hamate or curved, base truncate beta conidia (Gao et al. 2017). The sexual morph is undetermined.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), _Diaporthe yunnanensis_ clustered in the _D. sojae_ species complex.
Diaporthe zaobaisu Y.S. Guo & G.P. Wang, Persoonia 45: 156 (2020)

Typification details – Holotype, HMAS 248152; ex-type, CGMCC 3.19598
Host – *Pyrus bretschneideri* cv. Zaobaisu (Rosaceae)
Distribution – Asia (China)
Notes – The species was introduced based on a well-supported independent clade in the phylogenetic tree that was distinct from known *Diaporthe* species (Guo et al. 2020). *Diaporthe zaobaisu* was isolated from branches of *Pyrus bretschneideri*. Morphology of the asexual morph was described and illustrated in the original publication with fusiform, aseptate, 2-guttules, hyaline alpha conidia, and filiform, curved, tapering towards both ends, aseptate, hyaline beta conidia, while gamma conidia were not observed (Guo et al. 2020). The sexual morph is undetermined. A pathogenicity test was done by Guo et al. (2020), which confirmed this species causes disease in *Pyrus bretschneideri*.

In the phylogenetic tree of Norphanphoun et al. (2022, Fig. 1), *Diaporthe zaobaisu* clustered in the *D. oncostoma* species complex.

Typification details – Holotype, HMAS 249835; ex-type, CGMCC3.20271 = TZFH1
Host – *Prunus persica* cv. Zaofenghuang (Rosaceae)
Distribution – Asia (China)
Notes – *Diaporthe zaofenghuang* was introduced by Wang et al. (2021). It was found on buds of *Prunus persica* cv. Zaofenghuang in Fujian, China. The species was reported based on morphological character of asexual morph and molecular phylogeny of combined genes (ITS, *cal, his3*, *tef1-α*, and *tub2*). Sexual morph not observed. The morphological characters of species were observed from PDA and OA cultures and described with pycnidial conidiomata, with yellowish translucent conidial drops exuded from ostioles, fasciculate, long cylindrical, straight or slightly curved, hyaline conidiophores, cylindrical, phialidic conidiogenous cells, with ellipsoidal, aseptate, 2-guttules, hyaline alpha conidia, beta conidia not observed. Detailed description and illustration were given by Wang et al. (2021). Phylogenetically, *D. zaofenghuang* was closely related to species member in the *D. eres* species complex (*D. heterophyllae*, *D. penetratum*, and *D. virgiliae*) (Wang et al. 2021). Hence, we place this species in *D. eres* species complex.

= *Carlia zaviana* (Sacc.) Kuntze, Revis. gen. pl. (Leipzig) 2: 846 (1891)

= *Laestadia zaviana* (Sacc.) Sacc. & Berl., Revue mycol., Toulouse 7(no. 26): 182 (1885)

Typification details – N/A
Host – *Rubus fruticosus* (Rosaceae)
Distribution – Europe (Italy)
Notes – *Diaporthe zaviana* was reported by Saccardo (1873) on the bark of *Rubus fruticosus*. The species is characterized by scattered perithecium, very short ostiole, oblong asci, 26–30 × 7–8 µm, and oblong to ellipsoid, 1-septate, with 2-guttules, hyaline ascospores, 6 × 3–3.5 µm (Saccardo 1882a). The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, LPS, Spegazzini, 1891
Host – *Zea mays* (Poaceae)
Distribution – South America (Argentina)
Notes – *Diaporthe zeina* was reported by Spegazzini (1898) on rotten culms of *Zea mays* in Buenos Aires, Argentina. Morphology of the sexual morph was described and illustrated in the original publication with loosely gregarious perithecium, carbonaceous subcylindrical ostiole, fusoid to clavate, 65–70 × 9–10 µm, with cylindrical to subfusiform, 1-septate and slightly constricted.
with 2-guttules, hyaline ascospores, 18–20 × 4 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Typification details – Holotype, ZHKUCC 22-0039; ex-type, ZHKUCC 22-0039, ZHKUCC 22-0040

Host – *Morinda officinalis* (Rutaceae)

Distribution – Asia (China)

Notes – *Diaporthe zhaoqingensis* was introduced by Luo et al. (2022) based on morphological characteristics, phylogenetic analyses, and PHI test. The species was isolated from healthy stem and root of *Morinda officinalis* in Guangdong Province, China. In phylogenetic tree, *D. zhaoqingensis* formed a distinct clade, and is related to the clade containing *D. australiana*, *D. eucalyptorum*, *D. hongkongensis*, *D. lithocarpus*, and *D. salinicola* (Luo et al. 2022). Morphologically, *D. zhaoqingensis* produces gamma conidia, while other related species do not produce gamma conidia (Gomes et al. 2013, Yang et al. 2017a, Dayarathne et al. 2020, Wrona et al. 2020, Sun et al. 2021, Luo et al. 2022). A detailed description for *D. zhaoqingensis* was given in Luo et al. (2022). The sexual morph is undetermined.

Diaporthe ziziphina Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 366 (1909)

Typification details – Holotype, LPS, Spegazzini, Mar. 1904

Host – *Ziziphus vulgaris* (Rhamnaceae)

Distribution – South America (Argentina)

Notes – *Diaporthe ziziphina* was reported by Spegazzini (1909) from fruit petioles of *Ziziphus vulgaris* in Argentina. Morphology of the sexual morph was described and illustrated in the original publication with immersed perithecia, subcylindrical ostiole, fusoid to clavate asci, 45–50 × 9–10 µm, aparaphysate, ellipsoidal to elongate, 1-septate and slightly constricted, with 2-guttules, hyaline ascospores, 13–15 × 4–5 µm (Spegazzini 1909). The asexual morph is undetermined. Sequence data is not available for this species.

Diaporthe zopfii J. Kunze, Fung. sel. exs., cent. 3: no. 264 (1879)

Typification details – Holotype, GZU00030431

Host – *Acer pseudoplatanus* (Sapindaceae)

Distribution – Europe (Germany)

Notes – *Diaporthe zopfii* was found on dead branches of *Acer pseudoplatanus*. Morphology of the sexual morph was described in Saccardo (1883) with perithecia, short cylindrical ostiole, clavate asci, 57–60 × 7–9 µm, aparaphysate, with fusoid, 3-septate, slightly constricted, hyaline ascospores, 8–10 × 3–3.5 µm. The asexual morph is undetermined. Sequence data is not available for this species.

Excluded species

List of *Diaporthe* species excluded from *Diaporthe* is based on information from Index Fungorum (2023) and Species Fungorum (2023), but also takes into account the phylogenetic tree of Norphanphoun et al. (2022) and other available evidence.

Diaporthe aceris Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

Current name: *Diaporthe varians* (Curr.) Sacc., Syll. fung. (Abellini) 1: 614 (1882)

Diaporthe acervata (Ellis & Everh.) Ellis & Everh., N. Amer. Pyren. (Newfield): 738 (1892)

Current name: *Planistromella acervata* (Ellis & Everh.) M.E. Barr, Mycotaxon 60: 434(1996)
Diaporthe aculeans (Schwein.) Höhn., Annls mycol. 16(1/2): 108 (1918)

Diaporthe aesculi (Fuckel) Höhn., Annls mycol. 16(1): 116 (1918)

Diaporthe affinis Sacc., Michelia 1(no. 1): 28 (1877)

Diaporthe affinis Voglino, Annali R. Accad. Agric. Torino 53: 341 (1911) [1910]
Current name: *Chorostate voglinoana* Sacc. & Trotter [as ‘vogliniana’], Syll. fung. (Abellini) 22(1): 378 (1913)

Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Diaporthe ailanthi var. megacerasphora Fairm., Proc. Rochester Acad. Sci. 4: 220 (1906)
Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Current name: *Massarina albocarnis* (Ellis & Everh.) M.E. Barr, Mycotaxon 45: 210 (1992)

Diaporthe albovelata (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 1: 615 (1882)

Current name: *Asterella aliena* (Ellis & Everh.) Sacc. & Trotter, Syll. fung. (Abellini) 22(1): 535 (1913)

Diaporthe alleghaniensis Arnold, Canadian Journal of Botany 45:787 (1967)
Current name: *Diaporthopsis eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe alnea Fuckel, Fungi rhenani exsic., suppl., fasc. 5: no. 1988 (1867)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe androsaemi Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 152 (1903)

Diaporthe antarctica Spec., Boln Acad. nac. Cienc. Córdoba 11(2): 213 (1887)

Diaporthe apiculosa Ellis, Bull. Torrey bot. Club 9: 19 (1882)

Current name: *Anisogramma apiospora* (Ellis & Everh.) Merezhko, Opredelitel’ Pirenomitsetov USSR (Kiev): 258 (1986)
Diaporthe appendiculata G.H. Otth, Mitt. naturf. Ges. Bern 711–744: 100 (1871)

Nom. illegit., Art. 53.1

Diaporthe arctii f. arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe arctii f. tanaceti Rehm, Hedwigia 22(3): 39 (1883)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe arctii var. arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe arctii var. artemisiae Rehm, Hedwigia 35(Beibl.): (148) (1896)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Current name: *Diaporthella aristata* (Fr.) Petr., Annls mycol. 22(1/2): 30 (1924)

Current name: *Gnomonia artospora* (Dearn. & House) Dear, Annls mycol. 24: 36 (1940)

Diaporthe asparagi Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870)

Diaporthe aubertii (Westend.) Lambotte, Trans. Albany Inst.: 283 (1880)

Current name: *Diaporthe impulsa* (Cooke & Peck) Sacc., Syll. fung. (Abellini) 1: 618 (1882)

Current name: *Diaporthe foeniculina* (Sacc.) Údayanga & Castl., Persoonia 32: 95 (2014)

Diaporthe baccharidis (Cooke) Sacc., Syll. fung. (Abellini) 1: 692 (1882)
Current name: *Diaporthe sarothamni* Auersw. ex Nitschke, Pyrenomyc. Germ. 2: 303 (1870)

Diaporthe baccharidis var. baccharidis Cooke, Grevillea 7(no. 42): 53 (1878)
Current name: *Diaporthe sarothamni* Auersw. ex Nitschke, Pyrenomyc. Germ. 2: 303 (1870)
Diaporthe baccharidis var. **gallica** Brunaud, J. d’hist. nat. Bordeaux et Sud-Ouest 7: 2 [repr.] (1888)

Current name: *Diaporthe sarothamni* Auersw. ex Nitschke, Pyrenomyc. Germ. 2: 303 (1870)

Diaporthe badhamii (Curr.) Sacc., Syll. fung. (Abellini) 1: 635 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe bambusae Pat., J. Bot., Paris 11: 368 (1897)

Diaporthe batatas Harter & E.C. Field, Phytopathology 2: 121, 124 (1912)

Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe betulina C.M. Tian & Qin Yang, in Yang, Fan, Guarnaccia & Tian, MycoKeys 39: 121 (2018)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe bicalcarata (Ces.) Niessl, Verh. nat. Ver. Brünn 14: 169 (1876)

Diaporthe bicincta (Cooke & Peck) Sacc., Syll. fung. (Abellini) 1: 622 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe bicincta (E. Bommer & M. Rousseau) Syd., Annls mycol. 24(5/6): 362 (1926)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe binoculata (Ellis) Sacc., Syll. fung. (Abellini) 2: XLVIII (1883)

Diaporthe binoculata var. **binoculata** (Ellis) Sacc., Syll. fung. (Abellini) 2: XLVIII (1883)

Diaporthe binoculata var. **clethrae** Dearn., Mycologia 16(4): 158 (1924)

Diaporthe binoculata var. magnoliae-acuminata Peck ex Sacc., Syll. fung. (Abellini) 11: 307 (1895)

Diaporthe bitorulosa (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 608 (1882)

Diaporthe blepharodes (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 678 (1882)
 Current name: Cryptodiaporthe lebiseyi (Desm.) Wehm., Trans. Br. mycol. Soc. 17(4): 280 (1933)

Diaporthe bloxamii (Cooke) Berl. & Voglino, Syll. fung., Addit. I-IV (Abellini): 105 (1886)
 Current name: Melanconis stilbostoma (Fr.) Tul. & C. Tul., Select. fung. carpol. (Paris) 2: 115 (1863)

Diaporthe brachyceras Sacc., Syll. fung. (Abellini) 1: 643 (1882)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe brachyceras var. brachyceras Sacc., Syll. fung. (Abellini) 1: 643 (1882)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe brachyceras var. viburni Rehm, Fl. Bohem. Morav. exs., ser. II., Pilze: no. 679 (1913)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe brevicancria Sakalidis and Medina-Mora, Phytopathology (2020)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe carpinii Sacc., Mycotheca veneti 7: no. 665 (1876)
 Nom. illegit., Art. 53.1

Diaporthe carpinii var. carpinii (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]
 Current name: Diaporthe carpinii (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Diaporthe carpinii f. sordida (Nitschke) Petr., Hedwigia 65: 203 (1925)
 Current name: Diaporthe carpinii (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Diaporthe carpinii var. quercina Rehm, Ascomyceten: no. 149 (1873)
 Current name: Diaporthe carpinii (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]
Diaporthe carpinicola Fuckel, Jb. nassau. Ver. Naturk. 27–28: 37 (1874)

Diaporthe carpinigera (Berk. & M.A. Curtis) Sacc., Syll. fung. (Abellini) 2: XLVII (1883)

Diaporthe castanea (Tul. & C. Tul.) Sacc., Syll. fung. (Abellini) 1: 624 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

Diaporthe celastrina Dearn. & Barthol., Mycologia 16(4): 173 (1924)
Nom. inval., Art. 38.1(a) (Shenzhen)

Diaporthe celastrina (Ellis and Barthol), The Journal of Mycology 8:173 (1902)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe celeris Guarnaccia, Woodhall & Crous, in Guarnaccia et al., Persoonia 40: 146 (2018)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe cerasi Fuckel, Jb. nassau. Ver. Naturk. 25–26: 319 (1871)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe ceuthosporoides (Berk.) Sacc., Syll. fung. (Abellini) 1: 646 (1882)
Current name: *Diaporthe pardalota* (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Diaporthe ceuthosporoides f. *ceuthosporoides* (Berk.) Sacc., Syll. fung. (Abellini) 1: 646 (1882)
Current name: *Diaporthe pardalota* (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Current name: *Diaporthe pardalota* (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)
 Nom. illegit., Art. 53.1

Diaporthe circumscripta G.H. Otth ex Fuckel, Fungi rhenani exsic., suppl., fasc. 5: no. 1991 (1867)
 Nom. inval., Art. 38.1 (a) (Shenzhen)

Diaporthe ciliaris (Curr.) Sacc., Syll. fung. (Abellini) 1: 676 (1882)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

 Nom. inval., Art. 40.1 (Melbourne)

Diaporthe conjuncta Niessl, Verh. nat. Ver. Brünn 14: 211 (1876)
 Nom. illegit., Art. 53.1

Diaporthe conradii Ellis [as ‘conradi’], Am. Nat. 17: 316 (1883)
 Current name: Plagiostoma conradii (Ellis) M.E. Barr, Mycol. Mem. 7: 107 (1978)

Diaporthe controversa (Desm.) Nitschke, Jb. nassau. Ver. Naturk. 25–26: 319 (1871)
 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe convexa (Preuss) Sacc., Syll. fung. (Abellini) 1: 630 (1882)

Diaporthe cornicola var. acuta Starbäck, Ark. Bot. 5(no. 7): 25 (1905)

Diaporthe coronillae (Desm.) Sacc., Syll. fung. (Abellini) 1: 642 (1882)
 Current name: Dothiorella coronillae (Desm.) Petr., Sydowia 16(1–6): 188 (1963)
Diaporthe corymbosa (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 622 (1882)
Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe crassicollis Nitschke, Pyrenomyc. Germ. 2: 258 (1870)
Current name: *Diaporthe pardalota* (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Current name: *Diaporthe cucurbitae* (McKeen) Udayanga & Castl., Index Fungorum 513: 1 (2022)

Nom. inval., Art. 38.1(a) (Shenzhen)

Diaporthe densissima Ellis, Am. Nat. 17: 316 (1883)

Diaporthe desmazieri var. *desmazieri* Niessl ex Sacc., Syll. fung. (Abellini) 1: 656 (1882)
Current name: *Diaporthe desmazieri* Niessl ex Sacc. [as ‘*desmazieri*’], Syll. fung. (Abellini) 1: 656 (1882)

Diaporthe desmazieri var. *melampyri* Sacc., Syll. fung. (Abellini) 1: 657 (1882)
Current name: *Diaporthe desmazieri* Niessl ex Sacc. [as ‘*desmazieri*’], Syll. fung. (Abellini) 1: 656 (1882)

Diaporthe digitifera Mouton, Bull. Soc. R. Bot. Belg. 28(no. 2): 75 (1889)

Diaporthe digitifera var. *digitifera* Mouton, Bull. Soc. R. Bot. Belg. 28(no. 2): 75 (1889)
Diaporthe digitifera var. lignicola Sacc., Syll. fung. (Abellini) 9: 721 (1891)

Diaporthe discors Sacc., Michelia 2(no. 6): 60 (1880)
 Current name: Diaporthe arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe discrepans Sacc., Michelia 2(no. 8): 568 (1882)
 Current name: Diaporthe arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe discutiens (Berk.) Sacc., Syll. fung. (Abellini) 1: 677 (1882)
 Current name: Diaporthe arctii (Lasch) Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe dongii S.J. Song & Landrein, Mycobiology 50 (2): 102 (2022)
 Nom. inval. Art. F.5.1

Diaporthe eleutharrhenae S.J. Song & Landrein, Mycobiology 50(2): 100 (2022)
 Nom. inval., Arts F.5.1; 40.1 (Shenzhen)

 Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe ellisii Rehm, Bull. Torrey bot. Club 10(7): 89 (1883)

Diaporthe epilobii Cooke, Fungi Brit. Exs., ser. 1: no. 686 (1874)
 Nom. illegit., Art. 53.1

Diaporthe epilobii (Auersw.) Mussat, in Saccardo, Syll. fung. (Abellini) 15: 115 (1901)
 Nom. inval., Art. 36.1(a), (c) (Melbourne)

Diaporthe euphorbiae Sacc., Syll. fung. (Abellini) 1: 665 (1882)
 Current name: Diaporthe pardalota (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Diaporthe exasperans Nitschke, Pyrenomyc. Germ. 2: 289 (1870)
Diaporthe exasperans var. exasperans Nitschke, Pyrenomyc. Germ. 2: 289 (1870)

Diaporthe exasperans var. santonensis Pass., Revue mycol., Toulouse 8(no. 32): 205 (1886)

Diaporthe extensa (Fr.) Sacc., Syll. fung. (Abellini) 1: 618 (1882)
Current name: *Eutypella extensa* (Fr.) Sacc., Syll. fung. (Abellini) 1: 153 (1882)

Diaporthe extensa f. extensa (Fr.) Sacc., Syll. fung. (Abellini) 1: 618 (1882)
Current name: *Eutypella extensa* (Fr.) Sacc., Syll. fung. (Abellini) 1: 153 (1882)

Diaporthe extensa f. pruni Syd., Mycotheca Germanica 24: no. 1100 (1913)
Current name: *Eutypella extensa* (Fr.) Sacc., Syll. fung. (Abellini) 1: 153 (1882)

Diaporthe faginea (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 619 (1882)
Current name: *Diaporthe rudis* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 282 (1870)

Diaporthe farcta (Berk. & Broome) Niessl, Verh. nat. Ver. Brünn 14: 211 (1876)
Current name: *Ditopella farcta* (Berk. & Broome) Sacc., Syll. fung. (Abellini) 1: 450 (1882)

Diaporthe fibrosa Sacc., Syll. fung. (Abellini) 3: 247 (1884)
Current name: *Rabenhorstia fibrosa* Petr., Sydowia 16(1–6): 192 (1963)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe fulvopruinata (Berk.) Sacc., Syll. fung. (Abellini) 1: 621 (1882)

Diaporthe fuscidula (Cooke) Berl. & Voglino, Syll. fung., Addit. I-IV (Abellini): 106 (1886)

Diaporthe galericulata (Tul. & C. Tul.) Sacc., Syll. fung. (Abellini) 1: 629 (1882)

Diaporthe glyptica (Berk. & Curr.) Sacc., Syll. fung. (Abellini) 1: 629 (1882)

Diaporthe tessella (Pers.) Rehm, Ascomyceten: no. 176 (1873)

Diaporthe helicis Niessl, Verh. nat. Ver. Brünn 14: 210 (1876)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe hippocastani (Cooke) Berl. & Voglino, Syll. fung., Addit. I-IV (Abellini): 105 (1886)

Diaporthe hircini Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 134 (1903)

Diaporthe hricensis Petr., Annls mycol. 12(5): 477 (1914)

Diaporthe hystrix (Tode) Sacc., Syll. fung. (Abellini) 1: 610 (1882)
Diaporthe idaeicola (P. Karst.) Vestergr., Bot. Notiser: 30 (1900)

Diaporthe ilicina Cooke, Grevillea 18(no. 88): 74 (1890)
Current name: *Diaporthe pardalota* (Mont.) Nitschke ex Fuckel, Jb. nassau. Ver. Naturk. 23–24: 206 (1870) [1869–70]

Diaporthe innesii (Curr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

Diaporthe inquilina Nitschke, Pyrenomyc. Germ. 2: 272 (1870)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe inquilina subsp. *inquilina* Nitschke, Pyrenomyc. Germ. 2: 272 (1870)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe inquilina subsp. *uliginosa* Sacc., Syll. fung. (Abellini) 1: 650 (1882)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Nom. illegit., Art. 53.1

Nom. inval., Arts 40.5, 40.6 (Melbourne)

Current name: *Melanconis juglandis* (Ellis & Everh.) A.H. Graves, Phytopathology 13: 311 (1923)

Diaporthe juncaginearum Rostr., Bot. Tidsskr. 19: 216 (1895)

Diaporthe krabiensis Dayarathne, in Dayarathne, Jones, Maharachchikumbura, Devadatha, Sarma, Khongphinitbunjong, Chomnunti & Hyde, Mycosphere 11(1): 92 (2020)
Current name: *Diaporthe krabiensis* Dayarathne ex S. Hongsanan & K.D. Hyde (This paper).

Diaporthe labiatae (Cooke) Sacc., Syll. fung. (Abellini) 1: 656 (1882)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe landeghemiae f. *landeghemiae* (Westend.) Nitschke, Pyrenomyc. Germ. 2: 318 (1870)
(Westend.) Nitschke 1870
Current name: *Diaporthe landeghemiae* (Westend.) Nitschke, Pyrenomyc. Germ. 2: 318 (1870)
Diaporthe lebiseyi (Desm.) Niessl, Verh. nat. Ver. Brünn 10: 204 (1872)

Diaporthe leiphaemia (Fr.) Sacc. [as ‘leiphaema’], Atti Soc. Veneto-Trent. Sci. Nat. 2(1): 135 (1873)

Diaporthe leiphaemia var. leiphaemia (Fr.) Sacc., Atti Soc. Veneto-Trent. Sci. Nat. 2(1): 135 (1873)

Diaporthe leiphaemia var. major Brunaud, Revue mycol., Toulouse 8(no. 32): 205 (1886)

Diaporthe leiphaemia var. raveneliana Thüm. & Rehm, Pap. Mich. Acad. Sci. 9: 486 (1929)

Diaporthe leiphaemoides (Fuckel) Sacc., Syll. fung. (Abellini) 1: 624 (1882)

Current name: *Massarina leucosarca* (Ellis & Everh.) M.E. Barr, Mycotaxon 45: 214 (1992)

Diaporthe ligustrina Petr., Annls mycol. 13(1): 49 (1915)

Diaporthe lineariformis Petr., Annls mycol. 23(1/2): 72 (1925)

Diaporthe linearis (Nees ex Fr.) Nitschke, Pyrenomyc. Germ. 2: 277 (1870)

Diaporthe longirostris (Tul. & C. Tul.) Sacc., Syll. fung. (Abellini) 1: 609 (1882)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)
Diaporthe lonicerae Dissan., Camporesi & K.D. Hyde, in Dissanayake, Camporesi, Hyde, Zhang, Yan & Li, Mycosphere 8(5): 867 (2017)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe macounii Dearm., Mycologia 8(2): 100 (1916)

Diaporthe mahoniae f. foliicola Grove, J. Bot., Lond. 71: 256 (1933)
Current name: *Diaporthe mahoniae* Speg., Michelia 1(no. 5): 457 (1879)

Diaporthe magnispora (Ellis & Everh.) Sacc., Syll. fung. (Abellini) 9: 707 (1891)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe malbranchei Sacc., Michelia 1(no. 5): 509 (1879)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe malbranchei var. abscondita Berl. ex Sacc., Syll. fung. (Abellini) 9: 713 (1891)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe mamiania var. valsiformis Rehm, Annls mycol. 11(2): 152 (1913)
Current name: *Diaporthe mamiania* Sacc., Syll. fung. (Abellini) 1: 609 (1882)

Diaporthe maritima Tanney, in Tanney, McMullin, Green, Miller & Seifert, Fungal Biology 120(11): 1454 (2016)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe mate Speg., Anal. Mus. nac. B. Aires, Ser. 3 17(10): 122 (1908)
Current name: *Cryptodiaporthe mate* (Speg.) Wehm., Revta Mus. La Plata, Secc. Bot. 2: 84 (1938)

Diaporthe maydis (Berk.) Ellis & Everh., N. Amer. Pyren. (Newfield): 452 (1892)

Diaporthe mediterranea M. León, Rodríguez-Reina & Armengol, in León et al., Agronomy 10(8, no. 1062): 17 (2020)

Diaporthe medusaea Nitschke, Pyrenomyc. Germ. 2: 251 (1870)
Current name: *Diaporthe rudis* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 282 (1870)
Diaporthe melaena (Rehm) Petr., Mycotheca carpathica 4: no. 89 (1920)
Current name: Diaporthe eres Nitschke, Pyrenomyce. Germ. 2: 245 (1870)

Current name: Amphisphaeria millepunctata (Fuckel) Petr., Annls mycol. 21(3/4): 329 (1923)

Nom. illegit., Art. 53.1

Nom. illegit., Art. 53.1

Current name: Diaporthe eres Nitschke, Pyrenomyce. Germ. 2: 245 (1870)

Current name: Amphisphaeria multipunctata (Fuckel) Petr. [as ‘millepunctata’], Annls mycol. 21(3/4): 329 (1923)

Diaporthe myinda (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 611 (1882)

Current name: Diaporthe inaequalis (Curr.) Nitschke, Pyrenomyce. Germ. 2: 285 (1870)

Current name: Diaporthe eres Nitschke, Pyrenomyce. Germ. 2: 245 (1870)

Current name: Anisogramma vepris (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1986)

Diaporthe nidulans b exigua Niessl, Verh. nat. Ver. Brünn 14: 210 (1876)
Current name: Anisogramma vepris (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1986)
Diaporthe nidulans var. exigua (Niessl) Sacc., Syll. fung. (Abellini) 1: 627 (1882)
Current name: Anisogramma vepris (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1986)

Diaporthe nidulans var. nidulans Niessl, Verh. nat. Ver. Brünn 14: 209 (1876)
Current name: Anisogramma vepris (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1986)

Diaporthe niesslii Sacc., Michelia 1 (no. 4): 391 (1878)
Current name: Diaporthe niessliana Sacc. [as ‘niessleana’], Syll. fung. (Abellini) 1: 623 (1882)

Diaporthe niesslii J. Kunze, Hedwigia 17: 46 (1878)

Diaporthe nigricolor Nitschke, Pyrenomyc. Germ. 2: 260 (1870)
Current name: Diaporthe syngenesia (Fr.) Fucky, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

Diaporthe nigricolor f. pseudonigricolor Rehm, Hedwigia 43 (Beibl.): (32) (1904)
Current name: Diaporthe syngenesia (Fr.) Fucky, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

Diaporthe nitschkei J. Kunze, Fung. sel. exs., cent. 2: no. 124 (1877)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: Diaporthe foeniculina (Sacc.) Udayanga & Castl., Persoonia 32: 95 (2014)

Diaporthe nobilis Sacc. & Speg., Michelia 1 (no. 4): 386 (1878)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe nucleata (Curr.) Sacc., Syll. fung. (Abellini) 1: 617 (1882)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe obscura (Peck) Sacc., Syll. fung. (Abellini) 1: 627 (1882)
Current name: Anisogramma vepris (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1986)

Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)
Diaporthe occulta (Fuckel) Nitschke, Pyrenomyc. Germ. 2: 266 (1870)
Current name: *Macrodiaporthe occulta* (Fuckel) Petr., Annls mycol. 17(2/6): 94 (1920)

Diaporthe oligocarpa subsp. *viridarii* Sacc., Michelia 2(no. 7): 301 (1881)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe ophites Sacc., Mycotheca veneti 3: no. 214 (1875)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe orthoceras f. *achilleae* Sacc., Syll. fung. (Abellini) 3: 124 (1884)
Current name: *Diaporthe orthoceras* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)

Diaporthe orthoceras f. *helianthi* Sacc., Syll. fung. (Abellini) 1: 651 (1882)
Current name: *Diaporthe orthoceras* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)

Diaporthe orthoceras f. *orthoceras* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)
Current name: *Diaporthe orthoceras* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 270 (1870)

Diaporthe ostryae Dearn., Mycologia 18(5): 246 (1926)

Diaporthe padi G.H. Otth, Mitt. naturf. Ges. Bern 711–744: 99 (1871) [1870]
Current name: *Diaporthe decorticans* (Lév.) Sacc. & Roum., Reliq. Libert 2: no. 88 (1881)

Current name: *Diaporthe decorticans* (Lév.) Sacc. & Roum., Reliq. Libert 2: no. 88 (1881)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe pantherina (Berk.) Cooke, Grevillea 7(no. 43): 82 (1879)
Diaporthe parasitica Murrill, Torreya 6: 189 (1906)
 Current name: *Cryphonectria parasitica* (Murrill) M.E. Barr, Mycol. Mem. 7: 143 (1978)

Diaporthe patria Speg., in Saccardo, Michelia 2(no. 7): 250 (1881)
 Current name: *Diaporthe decorticans* (Lév.) Sacc. & Roum., Reliq. Libert 2: no. 88 (1881)

Diaporthe paulula (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 617 (1882)

Diaporthe phaseolorum f. sp. caulivora Kulik, Mycologia 76(2): 288 (1984)
 Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

 Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

Diaporthe phaseolorum var. caulivora Athow & Caldwell, Phytopathology 14: 323 (1954)
 Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

Diaporthe phaseolorum var. phaseolorum (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)
 Current name: *Diaporthe phaseolorum* (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 692 (1882)

Diaporthe phomospora (Cooke & Ellis) Sacc., Syll. fung. (Abellini) 1: 630 (1882)

Diaporthe phragmitis Crous, in Crous et al., Persoonia 33: 219 (2014)
 Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe picea var. linariae Pat., in Pitard, Explor. Scient. Maroc, Botan.: 149 (1913)

Diaporthe platasca (Peck) Sacc., Syll. fung. (Abellini) 1: 613 (1882)

Diaporthe populea Sacc., Bull. Soc. R. Bot. Belg. 26(no. 1): 174 (1887)
 Current name: *Cryptodiaporthe populea* (Sacc.) Butin, Sydowia 11(1–6): 31 (1958)
Diaporthe populina (Pers.) Höhn., Annls mycol. 16(1/2): 106 (1918)

Diaporthe prominula E. Bommer, M. Rousseau & Sacc., Bull. Soc. R. Bot. Belg. 26: 197 (1887)

Diaporthe protracta Nitschke, Pyrenomyc. Germ. 2: 255 (1870)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe pteleae Rehm, in Sydow, Mycotheca Marchica, cent. 16: no. 1568 (1887)

Current name: *Diaporthe strumella* (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Current name: *Diaporthe samaricola* W. Phillips & Plowr., Grevillea 3(no. 27): 126 (1875)

Diaporthe pulchella Sacc. & Briard, Atti Inst. Veneto Sci. lett., ed Arti, Sér. 6 2: 437 (1884)

Diaporthe pulla Nitschke, Pyrenomyc. Germ. 2: 246 (1870)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe punctata (Cooke) Berl. & Voglino, Syll. fung., Addit. I-IV (Abellini): 108 (1886)

Diaporthe punctostoma (Ellis) Ellis, Syll. fung., Addit. I-IV (Abellini): XLVIII (1883)

Current name: *Diaporthe leucospermi* Crous & Summerell, Persoonia 27: 32 (2011)

Current name: *Pseudovalsa pyri* (Hazsl.) Sacc. & Traverso [as ‘piri’], Syll. fung. (Abellini) 20: 543 (1911)
Diaporthe pyrrhocystis (Berk. & Broome) Fückel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870)

Diaporthe quadrinucleata (Curr.) Sacc., Syll. fung. (Abellini) 1: 689 (1882)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe quercus Fückel, Jb. nassau. Ver. Naturk. 27–28: 36 (1874)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe racemula (Cooke & Peck) Sacc., Syll. fung. (Abellini) 1: 691 (1882)

Diaporthe raveneliana Thüm. & Rehm, Mycoth. Univ., cent. 9: no. 865 (1877)
Current name: Amphiporthe raveneliana (Thüm. & Rehm) M.E. Barr, Mycol. Mem. 7: 141 (1978)

Current name: Diaporthe foeniculina (Sacc.) Udayanga & Castl., Persoonia 32: 95 (2014)

Diaporthe rehmii Nitschke, Pyrenomyc. Germ. 2: 301 (1870)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe resecans Nitschke, Pyrenomyc. Germ. 2: 314 (1870)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe rhanicensis Petr., Annls mycol. 12(5): 477 (1914)
Current name: Amphiporthe rhanicensis (Petr.) Petr., Sydowia 24(1–6): 257 (1971)

Diaporthe rhododendri Feltgen, Vorstud Pilzfl. Luxemb., Nachtr. III: 141 (1903)
Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: Diaporthe foeniculina (Sacc.) Udayanga & Castl., in Udayanga, Castlebury, Rossman & Hyde, Persoonia 32: 95 (2014)

Diaporthe ribesia Rehm, Öst. bot. Z. 54(3): 82 (1904)

Diaporthe robergeana (Desm.) Niessl, Fungi europ. exsiccat. no. 2222 (1882)

Current name: Diaporthe eres Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: Diaporthe leucospermi Crous & Summerell, Persoonia 27: 32 (2011)
Diaporthe rostellata (Fr.) Nitschke, Pyrenomyc. Germ. 2: 298 (1870)

Diaporthe rostellata var. rostellata (Fr.) Nitschke, Pyrenomyc. Germ. 2: 298 (1870)

Diaporthe rumicis Nitschke ex Plowr., Grevillea 8(no. 47): 107 (1880)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Diaporthe saccardoana var. moravica Petr. [as ‘saccardiana’], Fl. Bohem. Morav. exs., ser. II., Pilze: no. 614 (1913)
Current name: *Diaporthe saccardoana* J. Kunze ex Sacc. [as ‘saccardiana’], Syll. fung. (Abellini) 1: 628 (1882)

Diaporthe salicella (Fr.) Sacc., Mycotheca veneti 2: no. 135 (1875)

Diaporthe salicella f. salicella (Fr.) Sacc., Mycotheca veneti 2: no. 135 (1875)

Diaporthe salinicola Dayar., in Dayarathne, Jones, Maharachchikumbura, Devadatha, Sarma, Khongphinitbunjong, Chomnunti & Hyde, Mycosphere 11(1): 91 (2020)
Nom. illegit., Art. 53.1

Diaporthe salviicola (Cooke & Ellis) Sacc. [as ‘salviaecola’], Syll. fung. (Abellini) 1: 657 (1882)

Nom. illegit., Art. 53.1

Current name: *Diaporthe sarothamni* Auersw. ex Nitschke, Pyrenomyc. Germ. 2: 303 (1870)

Current name: *Diaporthe dulcamarae* Nitschke, Pyrenomyc. Germ. 2: 250 (1870)

Nom. illegit., Art. 53.1
Current name: Diaporthe sociabilis Nitschke, Pyrenomyc. Germ. 2: 263 (1870)

Diaporthe sorbariae f. amorphae Rehm, Mycotheca Marchica, cent. 36–38; no. 3739 (1892)
Current name: Diaporthe sorbariae Nitschke, Pyrenomyc. Germ. 2: 261 (1870)

Diaporthe sordida Nitschke, Pyrenomyc. Germ. 2: 252 (1870)
Current name: Diaporthe carpini (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Diaporthe sordida f. alni Höhn., Fungi Imperfecti exs., Fasc. 50: no. 2476 (1919)
Current name: Diaporthe carpini (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Nom. illegit., Art. 53.1

Diaporthe spina var. apiculata (Wallr.) Rehm, Annls mycol. 7(5): 404 (1909)

Diaporthe stictostoma Ellis ex Sacc., Syll. fung., Addit. I-IV (Abellini): XLVIII (1883)

Diaporthe stilbostoma Sacc., Syll. fung. (Abellini) 1: 615 (1882)
Current name: Melanconis stilbostoma (Fr.) Tul. & C. Tul., Select. fung. carpol. (Paris) 2: 115 (1863)

Current name: Diaporthe strumella (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]

Current name: Diaporthe strumella (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870) [1869–70]
Diaporthe sulfurea Fuckel, Jb. nassau. Ver. Naturk. 23–24: 205 (1870)

Diaporthe sulfurea subsp. affinis Sacc., Michelia 1(no. 1): 27 (1877)

Diaporthe sydowiana (Sacc.) Sacc., in Saccardo & Trotter, Syll. fung. (Abellini) 22(1): 377 (1913)
 Nom. inval., Art. 36.1(c) (Melbourne)

Diaporthe syngenesia f. nigricolor (Nitschke) Petr., Hedwigia 65: 207 (1925)
 Current name: *Diaporthe syngenesia* (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

Diaporthe syngenesia f. syngenesia (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]
 Current name: *Diaporthe syngenesia* (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 204 (1870) [1869–70]

Diaporthe tami Speg., in Thümen, Myoth. Univ., cent. 17: no. 1657 (1880)
 Current Name: *Diaporthe scandens* Sacc. & Speg., Michelia 1(no. 4): 389 (1878)

Diaporthe theicola Curzi, Atti Ist. bot. R. Univ. Pavia, 3 Sér. 3: 60 (1926) [1927]
 Current Name: *Diaporthe foeniculina* (Sacc.) Udayanga & Castl., in Udayanga, Castlebury, Rossman & Hyde, Persoonia 32: 95 (2014)

Diaporthe thelebola (Fr.) Sacc., Syll. fung. (Abellini) 1: 605 (1882)
 Current name: *Pseudovalsella thelebola* (Fr.) Höhn., Botan. Zbl. 140: 155 (1919)

Diaporthe tiliacea (Ellis) Höhn., Am. Nat. 17(1): 195 (1883)

Diaporthe tillandsiae Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 365 (1909)
 Current name: *Cryptodiaporthe tillandsiae* (Speg.) Wehm., Revta Mus. La Plata, Secc. Bot. 2: 84 (1938)

Diaporthe tosta (Berk. & Broome) Niessl, in Rehm, Ascomyceten: no. 583 (1880)
Current name: *Gnomonia triostei* (Dearn. & House) Dearn., Circ. N.Y. St. Mus. 24: 37 (1940)

Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Diaporthe tuberculosa var. tuberculosa (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)
Current name: *Diaporthe tuberculosa* (Ellis) Sacc., Syll. fung. (Abellini) 1: 620 (1882)

Diaporthe tulasnei f. galegae G. Winter [as ‘gallegae’], Bolm Soc. broteriana, Coimbra, sér. 1 2: 45 (1884)
Current name: *Diaporthe tulasnei* Niessl, Pyrenomyc. Germ.: 274 (1870)

Diaporthe uliginosa (Sacc.) Sacc., Syll. fung. (Abellini) 12: 191 (1897)
Current name: *Diaporthe arctii* (Lasch) Nitschke, Pyrenomyc. Germ. 2: 268 (1870)

Current name: *Cryptospora umbrina* (Jenkins) Jenkins & Wehm., Phytopathology 25: 888 (1935)

Diaporthe utahensis (Sacc.) Petr., Annls mycol. 22(1/2): 81 (1924)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe velata (Pers.) Nitschke, Pyrenomyc. Germ. 2: 287 (1870)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe velata f. melaena (Rehm) Petr., Hedwigia 65: 207 (1925)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe velata f. velata (Pers.) Nitschke, Pyrenomyc. Germ. 2: 287 (1870)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe veneta Sacc. & Speg., Michelia 1(no. 4): 383 (1878)
Current name: *Apiognomonia veneta* (Sacc. & Speg.) Höhn., Hedwigia 62: 47 (1920)

Diaporthe vepris (Lacroix) Fuckel & Nitschke, Pyrenomyc. Germ. 2: 300 (1870)
Current name: *Anisogramma vepris* (Lacroix) Merezhko, Opredelitel’ Pirenomitsetov USSR (Kiev): 258 (1986)
Diaporthe vepris var. rosarum Pass., J. d’hist. nat. Bordeaux et Sud-Ouest 7: 1 [repr.] (1887)
Current name: *Anisogramma vepris* (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1886)

Diaporthe vepris var. vepris (Lacroix) Fuckel & Nitschke, Pyrenomyc. Germ. 2: 300 (1870)
Current name: *Anisogramma vepris* (Lacroix) Merezhko, Opredelitel' Pirenomitsetov USSR (Kiev): 258 (1886)

Current name: *Diaporthe viburni* Dearn. & Bisby, in Bisby, Buller & Dearness, Hainesia viburni: 76 (1929)

Diaporthe viridarii Sacc., Michelia 2(no. 7): 301 (1881)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe viridarii (Sacc.) Sacc., Syll. fung. (Abellini) 1: 671 (1882)
Current name: *Diaporthe eres* Nitschke, Pyrenomyc. Germ. 2: 245 (1870)

Diaporthe viticola Nitschke, Pyrenomyc. Germ. 2: 264 (1870)
Current name: *Diaporthe rudis* (Fr.) Nitschke, Pyrenomyc. Germ. 2: 282 (1870)

Diaporthe wibbei Nitschke, Pyrenomyc. Germ. 2: 305 (1870)

Diaporthe wibbei var. comptoniae (Schwein.) Wehm., Pap. Mich. Acad. Sci. 8: 215 (1927)

Diaporthe winteri Speg., Boln Acad. nac. Cienc. Córdoba 11(2): 212 (1887) [1888]
Nom. illegit., Art. 53.1

Acknowledgements
Sinang Hongsanan and Nakarin Suwannarach would like to thank Chiang Mai University, Thailand for the partially financial supports. We would also like to thank Mushroom Research Foundation (MRF), Chiang Rai, Thailand. Chitrabhanu S. Bhunjun would like to thank Mae Fah Luang University. The research was partially supported by Mae Fah Luang University.

References
Ahmad S. 1978 – Ascomycetes of Pakistan Part I. Biological Society of Pakistan Monograph 7, 1–236.

Berlese AN, Voglino P. 1886 – *Sylloge Fungorum Additamenta ad Volumina I-IV*, i-iv, 1–484.

Bisby GR, Buller AHR, Dearness J. 1929 – The fungi of Manitoba, 1–194.

Brunaud P. 1887 – Bulletin de la Société botanique de France 34, 4.

Bundhun D, Senanayake IC, Jayawardena RS, Camporesi E et al. 2021 – First reports of the sexual morphs of Diaporthe forlicesaenica nom. nov. and Diaporthe goutteri (Diaporthaceae, Diaporthales) revealed by molecular phylogenetics. Phytotaxa 516(1), 1–27.

Cooke MC, Harkness HW. 1884 – Californian fungi. Grevillea 13(65), 16–21.
Cooke MC. 1877a – Proceedings of the Academy of Natural Sciences of Philadelphia 29, 120.
Cooke MC. 1885 – A monthly record of cryptogamic botany and its literature. Grevillea 14, 47.
Cooke MC, Harkness HW. 1884 – Californian fungi. Grevillea 13(65), 16–21.
Cooke MC. 1877a – Proceedings of the Academy of Natural Sciences of Philadelphia 29, 120.
Cooke MC. 1885 – A monthly record of cryptogamic botany and its literature. Grevillea 14, 47.

Durieu M. 1848 – Exploration scientifique de l’Algérie 1(livr. 13), 484 [1846–49]

Edgerton CW, Moreland CC. 1921 – Eggplant blight. Louisiana Agricultural Experiment Station Bulletin 178, 1–44.

Ellis JB, Everhart BM. 1897a – New species of fungi from various localities. Bulletin of the Torrey Botanical Club 24, 125–137.

Enlows EMA. 1918 – A leaf blight of Kalmia latifolia. Journal Agricultural Research 13, 211.
Fabre JH. 1879 – Annales des Sciences Naturelles Botaniques, series 6, v. 9, 66–118.
Fairman CE. 1922 – New or rare fungi from various localities. Proceedings of the Rochester Academy of Science 6, 117–139.
Fan X, Yang Q, Bezerra JD, Alvarez LV et al. 2018 – Diaporthe from walnut tree (Juglans regia) in China, with insight of the Diaporthe eres complex. Mycological Progress 17(7), 841–853
Fan XL, Hyde KD, Udayanga D, Wu XY et al. 2015 – Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14, 82.
Ferreira MC, Vieira M de LA, Zani CL, Alves TM de A et al. 2015 – Molecular phylogeny, diversity, symbiosis and discovery of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochemical Systematics and Ecology 59, 36–44.
Fuckel L. 1869 – Symbolae mycologicae. Beiträge zur Kenntniss der Rheinischen Pilze, 204.
Garibaldi A, Bertetti D, Poli A, Gullino ML. 2011 – First report of black rot caused by Phomopsis cucurbitae on cantaloupe (Cucumis melo) in the Piedmont Region of Northern Italy. Plant Disease 95, 1317.
Gomzhina MM, Gannibal PB. 2022 – Diaporthe species infecting sunflower (Helianthus annuus) in Russia, with the description of two new species. Mycologia 114(3), 556–574.

Grove WB. 1933 – New or noteworthy fungi. XIII. Journal of Botany, British and Foreign 71, 251–288.

Grove WB. 1935 – British stem- and leaf fungi (Coelomycetes) 1, Sphaeropsidales. Cambridge Univ. Press.

Guarnaccia V, Crous PW. 2018 – Species of *Diaporthe* on *Camellia* and *Citrus* in the Azores Islands. Phytopathologia Mediterranea 57(2), 307–319.

Hara K 1925 – Diseases of cultivated plants (Book).

Hughes SJ. 1953 – Fungi from the Gold Coast. II. Mycological Papers 50, 1–104.

Inácio CA, Diane JC, Carlos CME. 1999 – *Phomopsis amaranthophila* sp. nov. a new coelomycete pathogenic on *Amaranthus tricolor* in Brazil. Fitopatologia Brasileira 24(2), 185–189.

Luna IJ, Cadiz F, Aravena R, Larach A et al. 2020 – First report of Diaporthe cynaroidis and D. australafirica associated with walnut branch canker in Chile. Plant Disease 104(10), 2732.

Mapook A, Hyde KD, McKenzie EHC, Jones EBG et al. 2020 – Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity 101, 1–175.

Oudemans CAJA. 1897 – Révision des Champignons tant supérieurs qu'inférieurs trouvés jusqu'à ce jour dans la Pays-Bas, Tom. II: Phycomycètes, Pyrenomycètes 2, 1–491.

Patouillard NT. 1897b – Catalogue Raisonné des Plantes Cellulaires de la Tunisie 7, 1–158.

Pereira CM, Ferreira BW, Aucique-Perez C, Barreto RW. 2021 –

Phomopsis azadirachtae sp. nov.: Yet another rose dieback fungus. Crop Protection 139, 1–11.

Pereira EC, Zabalgogaezcoa I, Arellano JB, Ugalde U et al. 2023 –

Perera RH, Hyde KD, Dissanayake AJ, Jones EB et al. 2018a –

Perera RH, Hyde KD, Peršoh D, Jones, EBG et al. 2018b –

Additions to wild seed and fruit fungi 1: the sexual morph of Diaporthe rosae on Magnolia champaca and Senna siamea fruits in Thailand. Mycosphere 9(2), 256–270.

Punithalingam E. 1981 – Studies on Sphaeropsidales in culture. III. Mycological Papers 149, 1–42.
Rokas A, Carroll SB. 2005 – More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution 22, 1337–1344.
Rossman AY, Allen WC, Braun U, Castlebury LA et al. 2016 – Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus 7(2), 289–308.
Saccardo PA, Saccardo D. 1906 – Sylloge Fungorum 18, 1–839.
Saccardo PA, Sydow P. 1899b – Supplementum Universale, Pars IV. Sylloge Fungorum 14, 1–1316.
Saccardo PA, Trotter A. 1913 – Supplementum Universale, Pars IX. Sylloge Fungorum 22, 1–1612.
Saccardo PA. 1895 – Supplementum Universale, Pars. III. Sylloge Fungorum 11, 1–753.
Saccardo PA. 1913a – Sylloge Fungorum Vol. XXII. Padova.
Sawada K. 1959 – Descriptive catalogue of Taiwan (Formosan) fungi. Part XI. Spec Publ Coll Agric Taiwan Univ 8, 1–268.

Shen YM, Chao CH, Chang, ST, Liu HL. 2010 – Identification for pathogenicity of Phomopsis capsici, a newly reported fruit rot disease of sweet pepper in Taiwan’ Bulletin of Taichung District Agricultural Improvement Station 109 (in Chinese).

Tan YP, Shivas RG. 2022 – Nomenclatural novelties. Index of Australian Fungi 2, 1–12.

Thompson SM, Grams RA, Neate SM, Shivas RG et al. 2018 – First reports of *Diaporthe kongii*, *D. masirevicii*, and *D. ueckerae* associated with stem and peg dieback on peanut in Australia. Plant Disease 102(7), 1459.

Tilak ST. 1968 – Contribution to our knowledge of ascomycetes of India. XIV. Sydowia 20(1–6), 271–272.

Trotter A, Cash EK. 1927 – Sylloge Fungorum 26, 313.

Van der Aa HA, Vanev S. 2002 – A revision of the species described in *Phyllosticta*. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.

Zapata M, Palma MA, Aninat MJ, Piontelli E. 2020 – Polyphasic studies of new species of Diaporthe from native forest in Chile, with descriptions of Diaporthe araucanorum sp. nov., Diaporthe foikelawen sp. nov. and Diaporthe patagonica sp. nov. International Journal of Systematic and Evolutionary Microbiology 70, 3379–3390.

