Freshwater fungi from the River Nile, Egypt

Abdel-Aziz FA

Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt

Abdel-Aziz FA 2016 – Freshwater fungi from the River Nile, Egypt. Mycosphere 7(6), 741–756, Doi 10.5943/mycosphere/7/6/4

Abstract

This study represents the first published data of freshwater fungi from the River Nile in Egypt. Knowledge concerning the geographic distribution of freshwater ascomycetes and their asexual morphs in Egypt and in the Middle East is limited. Ninety-nine taxa representing 42 sexual ascomycetes, 55 asexual taxa and two basidiomycetes were identified from 959 fungal collections recorded from 400 submerged samples. Samples were randomly collected from the River Nile, in Sohag, Egypt in the winter and summer between December 2010 and August 2014. Fifty-eight taxa (22 sexual ascomycetes and 36 asexual taxa) were collected during winter, while 60 taxa (25 sexual ascomycetes, 33 asexual taxa and two basidiomycetes) were collected in summer season. Of the 99 taxa recorded, 50 are new records for Egypt, including five new genera and 30 new species. Nine new genera and ten new species were described in previous articles. Fungi recorded from the two seasons were markedly different, with only 19 species common to both winter and summer collections. Asexual fungi dominated the fungal community during the two seasons. Taxonomical placements of 33 species were confirmed by molecular data based on LSU and SSU rDNA genes. Lolia aquatica (14.2%) was the dominant fungus in both winter and summer collections. Other dominant fungi were: Ceratorhiza sp. (19.5%) and Limnoperdon sp. (13%). These two basidiomycetes were the most common taxa in the summer, while they were absent in the winter. Common fungi were Coleophoma emperti (9.2%), Zopfiella latipes (8%), Discosporium tremuloides (5.5%), Trematophoma lignicola (5.5%) and Ophioceras commune (5%). Specious genera recorded from the two seasons were Dictyosporium (6 species), Monodictyss-like (3 species), Aniptodera (3 species), Lolia (3 species), Podospora (3 species), Zopfiella (3 species), and two species belong to each of the following genera: Achaetomium, Annulatascus, Lentithecium, Linocarpon, Cirrenalia, Ciliochora, Coleophoma, Colletogleueum, Clohesomyces, Periconia, Pseudorobillarda and Stagonospora.

Key words – asexual fungi – coelomycetes – fungal diversity – fungal ecology – phylogeny

Introduction

Woody debris and other plant remains enter freshwater through deforestation, irrigation, water runoff during rains and via dams. Filamentous freshwater fungi play a major role in decomposition of plant remains in streams, rivers and lakes and in nutrient recycling (Hyde & Goh 1998, 1999, Wong et al. 1998, Cai et al. 2003a, b, Jones & Choeyklin 2008, Raja et al. 2012, Hyde et al. 2016). Shearer (1993) defined freshwater ascomycetes as “all ascomycetes that occur on submerged or partially submerged substrata in aquatic habitats”. Freshwater ascomycetes were commonly recorded on woody tissues (Webster 1959, Eaton & Jones 1971, Hyde & Goh 1998,
1999, Wong et al. 1998, Raja et al. 2012), with asexual morphs common on senescent and decayed leaves (Ingold 1942, Goh 1997, Sridhar & Barlocher 2000), while basidiomycetes are rarely reported on submerged wood in freshwater habitats (Nawawi & Webster 1982, Marvanova & Suberkropp 1990, Hyde & Goh 1999, Sivichai & Jones 2004, Jones et al. 2014). Freshwater ascomycetes comprise an ecological group belonging to diverse taxonomic groups that increased in number from 288 (Shearer 1993) to 660 (Shearer & Raja 2016). The current number of asexual morphs of freshwater ascomycetes stands at 573, of which only 14 belong to coelomycetes (Shearer & Raja 2016). The lignicolous freshwater fungi belong mostly to the classes Dothideomycetes and Sordariomycetes (Hyde et al. 2013, Wijayawardene et al. 2014, Jones et al. 2014, Maharachchikumbura et al. 2015, 2016), a few taxa belong to the classes Eurotiomycetes and Orbiliomycetes (Swe et al. 2009, Su et al. 2015), while basidiomycetes and zygomycetes have rarely been encountered on decayed wood in freshwater habitats (Hyde & Goh, 1999, Jones et al. 2014). Sordariomycetes is the largest group of freshwater ascomycetes and account for 299 out of the 660 taxa (Shearer & Raja 2016).

Pioneer studies of freshwater ascomycetes have been carried out in lakes in England (Ingold 1954, 1955). In the following years work on freshwater ascomycetes were concentrated in temperate regions (e.g. Jones & Oliver 1964, Jones & Eaton 1969, Lamore & Goos 1978, Shearer & von Bodman 1983, Shearer & Crane 1986). In 1993, only 11 taxa were reported from the tropics (Shearer 1993). During the last three decades active research have been carried out on filamentous freshwater fungi in tropical regions of the world especially in Asia-Pacific: Papua New Guinea (Hyde 1994), Australia (Hyde 1996), Brunei (Ho et al. 2001, Hyde 2002), China (Hu et al. 2013), Hong Kong (Goh & Hyde 1999, Ho et al. 1999, Tsui et al. 2000), Thailand (Hu et al. 2010, Boonyuen et al. 2011, 2012), Peru (Raja et al. 2012). There are no detailed studies in the Middle East in general and only one study of freshwater ascomycetes from Africa (South Africa, Hyde et al. 1998).

Three-quarters of the samples collected during the present study were decayed submerged stems of *Phragmites australis* which is a tall perennial cosmopolitan grass found on all continents except Antractica (Haslam 1972). It is a colonial plant forming large monospecific stands along the margins of streams, brackish water and in marshes and ditches (Weiss 1979). There have been several studies on the aquatic fungi on *P. australis* in freshwater (Ingold 1954, 1955, Dudka 1963, Taligoola et al. 1972, Apinis et al. 1972ab, Luo et al. 2004) and estuarine habitats (Poon & Hyde 1998, Wong & Hyde 2001, Ryckegem & Verbeken 2005, Ryckegem et al. 2007, Abdel-Aziz 2008). In Egypt, a few studies have been carried out on filamentous freshwater fungi on submerged samples from the River Nile and irrigation canals (Abdel-Aziz 2001, 2004, Abdel-Aziz 2011, El-Sharouny 2011), however, those previous thesis are M.Sc. and PhD theses and their results are not yet published. This study has been carried out to document the diversity of filamentous freshwater fungi, study their seasonal distribution and taxonomy in the River Nile, Sohag, Egypt.

Materials & Methods

Sample examination

A total of 400 submerged decaying samples (50 decayed wood, 50 decayed date palm rachis and 300 *Phragmites australis* culm samples) were collected randomly in four collections (100 samples each collected during December 2010, August 2012, December 2012, August 2014) along four kilometer stretch (between 26°34´13.53ʺN, 31°42´27.72ʺE and 26°32´35.41ʺN, 31°42´56.96ʺE) of the River Nile bank in Sohag City, Egypt. Samples were returned to the laboratory and incubated in plastic boxes lined with sterilized moist tissue paper at room temperature. Samples were examined periodically for fungal fruiting structures over 3 month incubation. Methods used for the preparation of materials for light microscopy have been reported by Jones and Hyde (1988). Permanent slides and herbarium materials of the fungi recorded were deposited in the author’s herbarium and can be examined on request. The following data were calculated for the study site:
Table 1 Frequency of occurrence of taxa recorded at the study site:

<table>
<thead>
<tr>
<th>Fungi</th>
<th>winter</th>
<th>summer</th>
<th>Total</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycota</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achaetomium sp.1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>Ph.</td>
</tr>
<tr>
<td>Achaetomium sp.2</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>Angustospora nilensis Abdel-Aziz gen. et sp. nov.</td>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Aniptodera aquadulcis (S.Y. Hsieh, H.S. Chang & E.B.G. Jones)</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>D.</td>
</tr>
<tr>
<td>J. Campb., J.L. Anderson & Shearer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniptodera chesapeakensis Shearer & M.A. Mill</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>D.</td>
</tr>
<tr>
<td>Aniptodera fusiformis Shearer</td>
<td>2.5</td>
<td>-</td>
<td>1.2</td>
<td>D.</td>
</tr>
<tr>
<td>Annulatusc nilensis Abdel-Wahab & Abdel-Aziz</td>
<td>2.5</td>
<td>-</td>
<td>1.2</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Annulatusc sp.</td>
<td>-</td>
<td>1.5</td>
<td>0.7</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Aquaticola sp.</td>
<td>-</td>
<td>1</td>
<td>0.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Chaetomium sp.</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>Ph.</td>
</tr>
<tr>
<td>Helicascus aegyptiacus Abdel-Aziz gen. & sp. nov.</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>Jahnula aquatica (Kirschst.) Kirschst</td>
<td>3</td>
<td>-</td>
<td>1.5</td>
<td>D.</td>
</tr>
<tr>
<td>*Lentithecium cangshanean Z.L. Luo, X.J. Su & Hyde (Microthelia)</td>
<td>3</td>
<td>-</td>
<td>1.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Lentithecium unicellularis Abdel-Aziz sp. nov.</td>
<td>-</td>
<td>2.5</td>
<td>1.2</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>*Leptosphaeria sp.</td>
<td>1.5</td>
<td>4</td>
<td>2.7</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>*Lindra sp.</td>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Linocarpon verminosum (Mont.) K.D. Hyde</td>
<td>2.5</td>
<td>-</td>
<td>1.2</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>*Linocarpon sp.</td>
<td>1.5</td>
<td>-</td>
<td>0.7</td>
<td>D., P.</td>
</tr>
<tr>
<td>Lola aquatica Abdel-Aziz & Abdel-Wahab gen. et sp. nov.</td>
<td>13.5</td>
<td>15</td>
<td>14.2</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>Lola dictyospora Abdel-Aziz sp. nov.</td>
<td>-</td>
<td>1</td>
<td>0.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Lola sp. (Coelomycete 128)</td>
<td>-</td>
<td>6.5</td>
<td>3.2</td>
<td>Ph.</td>
</tr>
<tr>
<td>Lulworthia sp.</td>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>*Massarina sp.</td>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Mariuspora sp.</td>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Nais aquatica K.D. Hyde</td>
<td>-</td>
<td>2.5</td>
<td>1.2</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Nectria sp.</td>
<td>-</td>
<td>3.5</td>
<td>1.7</td>
<td>Ph.</td>
</tr>
<tr>
<td>Ophioceras commune Shearer, J.L. Crane & W. Chen</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Otthia sp.</td>
<td>2.5</td>
<td>-</td>
<td>1.2</td>
<td>D.</td>
</tr>
<tr>
<td>*Orbillia sp.</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Pleospora vagans var. aconiti Gawande & D.K. Agarwal</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
<td>Ph.</td>
</tr>
<tr>
<td>Pleurotheciiella sp.</td>
<td>-</td>
<td>2.5</td>
<td>1.2</td>
<td>D.</td>
</tr>
<tr>
<td>Podospora carpinicola* Mouch</td>
<td>-</td>
<td>3.5</td>
<td>1.7</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>**Podospora sp. 1</td>
<td>-</td>
<td>2.5</td>
<td>1.2</td>
<td>D.</td>
</tr>
<tr>
<td>**Podospora sp. 2</td>
<td>-</td>
<td>1.5</td>
<td>0.7</td>
<td>Ph.</td>
</tr>
<tr>
<td>Pseudoastrosphaeriella sp.</td>
<td>2.5</td>
<td>-</td>
<td>1.2</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Pseudohalonectria lignicola Minoura & Muroi</td>
<td>1.5</td>
<td>4.5</td>
<td>3</td>
<td>Ph.</td>
</tr>
<tr>
<td>*Thielavia antarctica Sthigiel & Guarro</td>
<td>1.5</td>
<td>-</td>
<td>0.7</td>
<td>Ph.</td>
</tr>
<tr>
<td>Tiriposa unicaudata E.B.G. Jones & Vrijmoed</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>Ph.</td>
</tr>
<tr>
<td>Westerdykella sp.</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>Ph.</td>
</tr>
<tr>
<td>Zopfiella leucotricha (Speg.) Malloch & Cain</td>
<td>-</td>
<td>5</td>
<td>2.5</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>Zopfiella latipes (N. Lundq.) Malloch & Cain</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>D., Ph.</td>
</tr>
<tr>
<td>*Zopfiella sp.</td>
<td>-</td>
<td>1.5</td>
<td>0.7</td>
<td>D.</td>
</tr>
<tr>
<td>Asexual fungi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Acroclymma** sp. | - | 1.5 | 0.7 | D.
| Alveophoma caballero Alcalde | 2.5 | 4.5 | 3.5 | P.
| *Aorina amphistroma* Cif | 3 | 5.5 | 4.2 | P.
| *Ceuthospora heteromelicola* Nag Raj | 4 | - | 2 | D.
| *Chaetosboliisa erysipoides* Griffon & Maubl | 3.5 | 2.5 | 3 | D., P.
| *Chaetosphaeronema hispidulum* (Corda) Moesz | 2.5 | 4.5 | 3.5 | P.
| # **Cheirosporium vesiculare** Abdel-Aziz sp. nov.| - | 1.5 | 0.7 | D.
| *Ciliochora longiseta* (Racib.) Höhn | 2.5 | - | 1.2 | P.
| *Ciliochora* sp. | 1 | - | 0.5 | Ph.
| *Cirrenalia* sp.1 | 2 | - | 1 | D., Ph.
| *Cirrenalia* sp.2 | 3 | - | 1.5 | Ph.
| *Clohesomyces aquaticus* K.D. Hyde | - | 3 | 1.5 | Ph.
| # **Clohesomyces** sp. | - | 2.5 | 1.2 | Ph.
| *Colephoma empetri* (Rostr.) Petr | 5 | 13.5 | 9.2 | P., Ph.
| *Colephoma oleae* (DC.) Petr. & Syd | 2 | 5 | 3.5 | D., Ph.
| *Colletogloeum obtusum* B. Sutton | - | 3 | 1.5 | Ph.
| *Colletogloeum olacis* B. Sutton | - | 2 | 1 | Ph.
| *Crandallia juncicola* Ellis & Sacc. | 3.5 | - | 1.7 | D., Ph.
| Dialaceniopsis landolphiae Bat. | 1.5 | 2.5 | 2 | D., Ph.
| # **Dictyosporaella** aquatica Abdel-Aziz gen. et sp. nov. | - | 9 | 4.5 | Ph.
| # **Dictyosporium** aquaticum Abdel-Aziz sp. nov. | - | 5.5 | 2.7 | P.
| *Dictyosporium australiense* B. Sutton | 6 | - | 3 | D., P.
| *Dictyosporium* bulbosum Tzean & J.L. Chen | 5 | - | 2.5 | D., P.
| Dictyosporium cocophylum Bat. | 8 | - | 4 | D.
| Dictyosporium digitatum J.L. Chen, C.H. Hwang & Tzean | 7 | - | 3.5 | P.
| # **Dictyosporium** palmae Abdel-Aziz sp. nov. | - | 4 | 2 | P.
| *Diploclados microsperma* B. Sutton | 6 | 2.5 | 4.2 | P., Ph.
| *Diplocytherea bambusina* Died. | 2 | - | 1 | D., P.
| *Discosporium* tremuloides* (Ellis & Everh.) B. Sutton | 6.5 | 4.5 | 5.5 | P., Ph.
| Hapalosphaeria deformans* (Syd. & P. Syd.) Syd. | 2 | - | 1 | P.
| # **Koochalamella** sp. | 3 | - | 1.5 | Ph.
| *Megalodochium elaeidis* (Beeli) Deighton | 1.5 | - | 0.7 | D.
| # **Myrothecium** sp. | - | 2.5 | 1.2 | P.
| # **Monodictys** sp. 1 (MD1308) | 1.5 | 4 | 2.7 | Ph.
| # **Monodictys** sp. 2 (MD1309) | 2 | 10 | 6 | Ph.
| # **Monodictys** sp. 3 (MD1314) | 1 | 8 | 5 | D., Ph.
| *Nigrospora* sp. | - | 2 | 1 | Ph.
| *Periconia laminella* E.W. Mason & M.B. Ellis | 2 | - | 1 | Ph.
| Periconia prolifica Anastasiou | 2.5 | - | 1.2 | D., Ph.
| *Pesotum* sp. | 2 | - | 1 | Ph.
| *Phaciella asperulina* (Bubák) B. Sutton | 4 | - | 2 | Ph.
| *Phyllosticta* sp. | 1.5 | - | 0.7 | Ph.
| # **Pseudorobillarda** sp. 1 | 4.5 | 4 | 4.2 | Ph. |
Table 1 continued

Pseudorobillarda sp. 2	2	-	1	Ph.
Sporoschisma hemipsila (Berk. & Broome) Zelski, A.N. Mill. & Shearer	-	2.5	1.2	Ph.
Stagonospora anglica Cunnell	5.5	-	2.7	D.
Stagonospora caricis (Oudem.) Sacc.	-	1.5	0.7	Ph.
Topospora aberiformis (Kunze) Fr.	-	2.5	1.2	Ph.
Torula herbarum (Pers.) Link	4	-	2	D., Ph.
Trematophoma lignicola Petr.	3	8	5.5	D., P.
Tricocladium sp. (algae)	-	2.5	1.2	Ph.
Unknown coelomycete MD6041	-	4.5	2.2	P., Ph.
Unknown coelomycete MD6042	-	2.5	1.2	P., Ph.
Unknown coelomycete MD6043	-	4	2	P., Ph.
*** Unknown orange conidia *** MD6055	-	3	1.5	Ph.

Basidiomycota

Ceratorhiza sp.	200	200	400	
Limnoperdon sp.	-	39	19.5	D., Ph.
Linnoperdon sp.	-	26	13	D., Ph.

Number of samples collected
Total number of fungal taxa
Number of Ascomycetes
Number of Sordariomycetes
Number of Dothideomycetes
Number of Asexual fungi
Number of Coeleomycetes
Number of Hyphomycetes
Number of Basidiomycetes
Total number of fungal collections
Number of fungi per wood sample

* New record
** New species
supported by molecular data
D = Dicot wood
P = Date Palm rachis
Ph = *Phragmites australis*

Percentage occurrence of each fungus = Number of collections of the fungus × 100
Number of samples collected

Number of fungi per sample = Total number of fungal collections
Number of samples collected

Jaccard and Sorenson similarity indices for the mycota of the two seasons were calculated according to the formulae:

Jaccard similarity index \((C_j) = \frac{j}{(a+b-j)}\)

Sorenson similarity index \((C_s) = \frac{2j}{a+b}\)

Where \(j\) is the number of species common to both seasons, and \(a\) = the number of species in site A, with \(b\) = the number of species in site B. For both indices, values of unity indicate cases of complete similarity, and a value of zero indicates 100% dissimilarity.

Menhinick’s diversity indices were calculated for the summer and winter collections according to the formula:

\(DMn\) (Menhinick’s diversity index) = \(\frac{S}{\sqrt{N}}\)
Where \(S \) is the total number of species and \(N \) is the total number of fungal collections from the site. Photographs were taken using an Olympus BX51 differential interference contrast light microscope (Olympus, Tokyo, Japan) and Optika view version 7.3.1.7 (Italy) digital imaging system. Single spore cultures of the recorded fungi were obtained according the methods described by Abdel-Wahab et al. (2016).

Results

Ninety-nine taxa representing 42 sexual ascomycetes, 55 asexual taxa and two basidiomycetes were identified from 959 fungal collections recorded from 400 submerged samples. These were randomly collected from the River Nile, Sohag, Egypt in the winter and summer between December 2010 and August 2014. Of the 99 taxa recorded, 50 are new records for Egypt including five new genera and 30 new species, of which three new genera and ten new species were described in previous articles namely Lolia aquatica Abdel-Aziz & Abdel-Wahab (Abdel-Aziz & Abdel-Wahab 2010), Annulatascus nilensis Abdel-Wahab & Abdel-Aziz (Abdel-Wahab et al. 2011), Helicascus aegyptiacus Abdel-Wahab & Abdel-Aziz (Zhang et al. 2013), Dictyosporium aquaticum Abdel-Aziz (Liu et al. 2015), Dictyosporella aquatica Abdel-Aziz (Ariyawansa et al. 2015), Angustospora nilensis Abdel-Aziz (Li et al. 2016), Lolia dictyospora Abdel-Aziz (Abdel-Aziz 2016a), Cheirosporium vesiculare Abdel-Aziz and Dictyosporium palmae Abdel-Aziz (Abdel-Aziz 2016b) and Lentithecium unicellularis Abdel-Aziz (Hyde et al. 2016). Fifty-eight taxa (22 sexual ascomycetes and 36 asexual taxa) were collected during winter season, while 60 taxa (25 sexual ascomycetes, 33 asexual taxa and two basidiomycetes) were collected in summer. Fungal communities in the two seasons were markedly different, Jaccard and Sorenson similarity indices were 0.2 and 0.33 respectively which means that the similarity between the mycota at the two seasons was very low, with only 19 taxa (5 sexual ascomycetes and 14 asexual taxa) recorded consistently over the two seasons. This reflects different fungal community composition from one season to another. Menhinick’s diversity indices were 3.08 and 2.44 for winter and summer collections, respectively, which indicates a higher fungal diversity during winter season. Asexual taxa dominated the fungal community in both seasons. Sexual ascomycetes (42 taxa) was the dominant fungal group followed asexual morphs. Taxonomical placements of 33 species were confirmed by molecular data based on LSU and SSU rDNA sequence data. Lolia aquatica (with 14.2 % total frequency of occurrence) was the dominant taxon from both winter and summer collections. Other dominant taxa were: Ceratorhiza sp. (19.5 %) and Limnoperdon sp. (13 %) (Fig. 1). These basidiomycetes were the most common fungi in summer season, while they were absent in winter. Common taxa included Coleophoma emperti (9.2 %), Zopfiella latipes (8 %), Discosporium tremuloides (5.5 %), Trematophoma lignicola (5.5 %) and Ophioceras commune (5 %). Specious genera recorded from the two seasons were Dictyosporium (6 species), Monodictys-like (3 species), Aniptodera (3 species), Lolia (3 species), Podospora (3 species), Zopfiella (3 species) and two taxa belonged to each of the following genera: Achaetomium, Annulatascus, Lentithecium, Linocarpon, Cirrenalia, Ciliochora, Coleophoma, Colletogloeum, Clohesomyces, Periconia, Pseudorobillarda and Stagonospora (Table1). Of the 42 sexual ascomycetes reported in this study, 27 belong to Sordariomycetes and 15 to Dothideomycetes (Figs 2–4).

Fungi recorded in the winter season

Fifty eight taxa (22 sexual ascomycetes and 36 asexual taxa) were identified from 355 fungal collection from 200 samples with an average of 1.77 species identified on each sample. The ratio of asexual taxa/ascomycetous taxa was 1.63. Frequency of occurrence of all taxa ranged from 1 to 13.5%. Lolia aquatica was the only frequent species (13.5%). Dictyosporium cocophylum (8%), Dictyosporium digitatum (7%), Discosporium tremuloides (6.5%), Dictyosporium australiense (6%), Diplodina microsperma (6%), Ophioceras commune (6%), Stagonospora anglica (5.5%), Dictyosporium bulbosum (5%) and Coleophoma empetri (5%) were occasional taxa, while 48 were recorded as rare taxa and are listed in table (1).
Fig. 1 – a–h. Ceratorhiza sp. a-c Sclerotia at different stages of maturation on wood. d, e. Surface view of the peridium. e–h. Branched and septate mycelia that found inside sclerotia. i–s. Limnoperdon sp. i–k. Basidiocarps on wood at different stages of development. l. Young basidium. m–o. Basidia and basidiospores. p–s. Variously shaped basidiospores. Scale bars: a–c, i–k = 200 μm, d–h, l–s = 10 μm.

Fungi recorded in the summer season

Sixty taxa (25 sexual ascomycetes, 33 asexual taxa and two basidiomycetes) were identified from 604 fungal collections from 200 samples with an average of 3 species identified on each sample. The ratio of asexual taxa/sexual taxa was 1.22. Frequency of occurrence of all taxa ranged from 1 to 39%. Ceratorhiza sp. (39%) and Limnoperdon sp. (26%) were very frequent species and were recorded only in the summer season. Lolia aquatica (15%), Coleophoma empetri (13.5%) and Zopfiella latipes (12%) were frequent species and were recorded in the winter and summer. Eight species were occasional species, while 46 taxa were rare and are listed in Table 1.

Discussion

This study extends our knowledge on freshwater fungi in Egypt. A few studies have been carried out on freshwater fungi in Egypt and these include Abdel-Aziz (2001) who recorded 64 taxa from decayed wood samples collected from River Nile (Sohag, Qena and Aswan) and on wood blocks exposed at River Nile at Sohag governorate, of the 64 fungi recorded in this study only seven species were recorded in the present study. Abdel-Aziz (2004) recorded 116 (56 asexual ascomycetes and 60 asexual taxa) taxa from 668 samples collected from River Nile, irrigation canals and a high dam lake (unpublished data), of the 116 fungi recorded in this study, only 15 were recorded in this study.
In the present study, higher numbers of asexual taxa than sexual fungi was recorded from the two seasons (55 asexual fungi vs. 42 ascomycetes and 2 basidiomycetes). The ratios of asexual to sexual taxa were 1.63 in winter season and 1.22 in summer season. These results agree with those of Abdel-Aziz (2008) who recorded 34 asexual fungi and 26 ascomycetes from Lake Manzala (brackish water). Tsui et al. (2000) reported similar results from various freshwater habitats in Hong Kong namely: Tung Chung River (2.2 asexual: 1 sexual taxa), Hang Cho Shui and Tai Po Kau Forest Stream (2 : 1). Similar results were recorded from different parts of the world: Palmiet river, South Africa (1.1: 1) (Hyde et al. 1998), Lake Barrine, Queensland, Australia (1.5:1) (Hyde & Goh 1998) and Brunei (1.4: 1) (Ho et al. 2001). The reasons for the variation in dominance of asexual fungi over ascomycetes are unknown. Only one species of discomycete, *Orbillia* sp., was recorded in the present study, however, the occurrence of discomycetes on wood submerged in tropical and subtropical rivers is rare (Hyde et al. 2016).
Two new basidiomycetes species namely: Ceratorhiza and Limnoperdon were the most frequent fungi in summer. Jones et al. (2014) listed 115 Basidiomycetes from freshwater habitats, of which nine species were recorded from wood. Eleven Ceratorhiza species are currently described (Index Fungorum 2016). Species of Ceratorhiza are associated with roots and plant pathogens and the presence of species in freshwater habitats is unusual. The fungus produce white fluffy, superficial sclerotia that turn to brown to reddish dark-brown with age and contain white mass of branched and septate mycelia (Fig. 1). Limnoperdon species recorded in the present study represent the second species in the genus. Limnoperdon incarnatum G.A. Escobar was described from submerged hardwood twigs from a freshwater marsh on the shore of Union lake, Seattle, Washington, USA, and referred to the Gasteromycetes (Escobar et al. 1976). Subsequently it has been reported from wood blocks submerged in brackish water (Tubaki 1977) and paddy-field soil (Ito & Yokoyama 1979).

Thirty-one coelomycetes were recorded in the present and this a high number of this fungal group compared to recorded results from different parts of the world. Only 14 species of coelomycetes were recorded worldwide (Shearer & Raja 2016). Thirty new fungi were recorded during the present study. This high percentage of new species might be explained by: (1) a few extensive studies have been carried out on filamentous freshwater fungi in Egypt. (2) Wood samples were exposed to direct sun light, high temperatures and low humidity level, thus samples and fungal material exposed to desiccation daily. Such condition creates a unique mycota different from those recorded from subtropical, tropical or temperate sites. Also fungal communities in temperate and tropical streams rarely overlap (Hyde & Goh 1999). Besides the water temperature, the biodiversity and communities of lignicolous freshwater fungi are affected by the structure and diversity of the riparian vegetation and the quality of stream water (Tsui et al. 2001, Vijaykrishna & Hyde 2006).

Of the 42 ascomycetes reported in this study, 27 belong to Sordariomycetes and 15 to Dothideomycetes. Higher percentages of the two classes were recorded from freshwater habitats around the globe (Hyde et al. 2016). Sordariomycetes represented around 60% of total ascomycetes in China (Hu et al. 2013) and 45% worldwide (Shearer & Raja 2016), while Dothideomycetes comprised around 34% worldwide (Shearer & Raja 2016). Dominance of Sordariomycetes and Dothideomycetes in freshwater might be explained by their abilities to produce superficial to immersed ascomata with gelatinous centrum, active ascospores dispersal and their ascospores equipped with elaborated appendages or gelatinous sheaths (Hyde and Goh 2003).

Fungi on Phragmites australis

During the present study, sixty-nine taxa representing 32 ascomycetes, 35 asexual taxa and two basidiomycetes were identified from 300 submerged samples of *P. australis* during the two seasons. Shearer (1993) listed 34 freshwater ascomycetes from submerged portions of *P. australis* and that increased to 50 (47 ascomycetes and 3 asexual fungi) (Shearer & Raja 2016). Eighty-one taxa were recorded from *P. australis* in temperate regions (England) (Apinis et al. 1972a,b, Taligoola et al. 1972), of which only 23 species were listed by Shearer (1993) as freshwater fungi.
Luo et al. (2004) identified 21 fungi (8 ascomycetes and 13 asexual taxa) from 100 samples of *P. australis* collected from Lake Dianchi, a heavily polluted lake in Yunnan, China with only two species were common to this study namely: *Pseudohalonecteria lignicola* and *Sporoschisma hemipsila*. Abdel-Aziz (2008) identified 60 taxa (26 ascomycetes and 34 asexual taxa) from 300 decayed samples of *P. australis* collected from Lake Manzala, a brackish lake in northern Egypt. Eight fungi were common to this study and Lake Manzala namely: *Aniptodera aquadulcis*, *A. fusiformis*, *Nais aquatica*, *Zopfiella leucotricha*, *Alveophoma caballerae*, *Dialaceniopsis landophiae*, *Hapalosphaeria deformans* and *Periconia prolifica* (Table 1).

Acknowledgements

This project is supported by Department of Botany and Microbiology, Faculty of Science, Sohag University. Dr. Shaun Pennycook is thanked for checking Latin names.

References

Abdel-Aziz FA. 2016a – The genus *Lolia* from freshwater habitats in Egypt with one new species. Phytotaxa 267, 279–288. http://dx.doi.org/10.11646/phytotaxa.267.4.4

751

Raja HA, Miller AN, Shearer CA. 2012 – Freshwater ascomycetes: natipusillaceae, a new family of tropical fungi, including Natipusilla bellaspora sp. nov. from the Peruvian Amazon. Mycologia 104, 569–573. http://dx.doi.org/10.3852/11-150

